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Abstract

A century of wildfire suppression policies has led to the build-up of combustible fuel
loads in forests, increasing the size, severity, and costs of wildfires. This study ex-
plores whether fuel-reduction treatments reduce wildfire suppression costs. Focusing
on wildfires igniting on U.S. Forest Service lands in the Pacific Northwest, we lever-
age exogenous variation in protections for the Northern Spotted Owl that unintention-
ally restrict fuel treatments. Conservative estimates indicate that four to seven dollars
are saved in suppression costs for every dollar spent on fuel treatments. Our results
highlight the potential for reforming environmental protections to achieve economic
savings and conservation benefits.
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“You own the fuel, you own the fire”—Urban fire specialist’s adage

In May 2001, U.S. governmental officials were alarmed to detect a mysterious aerosol signature
in the form of a smoke plume in Central Alberta, Canada. The signal was so extreme that U.S.
government officials called the Canadian government to ask if a nuclear device had been detonated.
The source was not a bomb, but a wildfire, the Chrisholm Fire, which at its peak seven-hour run,
released the energy equivalent of four Hiroshima bombs per minute (Vaillant, 2023). Fires of this
size are known to create their own weather systems with hurricane-force winds and lightning that
ignitemore firesmanymiles away. This is just a glimmer of the frightening intensity and destructive
capability of wildfires in the 21st century.

As the size and severity of wildfires have increased in recent decades (Miller et al., 2009), so
too have the economic costs and damages, with the estimated total annual cost in the U.S. ranging
from $394-893 billion USD (JEC, 2023). Wildfires incur economic costs through various channels,
such as losses in human-made and natural assets (Bayham et al., 2022; Wang and Lewis, 2024),
fire suppression costs (Baylis and Boomhower, 2023), human health (Molitor et al., 2023; Heft-
Neal et al., 2023), labor market impacts (Borgschulte et al., 2022), and losses in ecosystem services
(Smith, 1993). Such costs are expected to rise across the globe with climate change (Abatzoglou
andWilliams, 2016), increasing development in the wildland-urban interface (WUI; Radeloff et al.,
2018), and fire exclusion policies (Schoennagel et al., 2017).

The build-up of combustible material in forests, often referred to as fuel loads, is one of the
leading causes of increasing wildfire severity (Miller et al., 2009). Fuel loads have built up over
time far beyond their natural carrying capacity in response to current and historical fire suppression
policies (Stephens et al., 2007; North et al., 2022). Fuel treatment activities, such as prescribed
fires or mechanical tree removal, reduce fuel loads and have the potential to significantly alter
the economic costs of wildfires. However, despite widespread consensus in the forest ecology
literature that fuel treatments are effective at reducing wildfire severity, they have been strikingly
underemployed in the Western U.S. (Agee and Skinner, 2005; Kolden, 2019).

Fuel treatments may be underemployed because public agencies are chronically underfunded
and face contradicting expectations from the public. For example, the United States Forest Service
(USFS) employs less than 30,000 people despite owning more than 193 million acres of public
land.1 Public pressure and risk aversion skew an already scarce resource base towards fire sup-
pression at the expense of fuel treatments to avoid public lawsuits and condemnation. Regulatory
constraints based on environmental objectives and policies, such as endangered species protec-

1Unlike the Eastern U.S., public lands in the Western U.S. comprise the majority of forest land and burned area
from wildfires. For example, in the Pacific Northwest, federally managed lands accounted for around 68% of the total
burned area footprint from 1984-2018 (Barros et al., 2021).
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tions, federal and state air quality standards, survey and manage protocols, wilderness areas, and
the National Environmental Policy Act (NEPA), significantly hinder the ability of public agen-
cies to conduct fuel treatments on public lands (North et al., 2012, 2015; Edwards and Sutherland,
2022). Such environmental regulations lead to instances where the costs associated with no action
are overlooked, and the “precautionary principle” becomes the “paralyzing principle” (Hessburg
et al., 2021).

This paper presents the first causally identified estimate of the effectiveness of fuel treatments in
reducing wildfire costs. Although prior forest ecology research has demonstrated the effectiveness
of fuel treatments in reducing fire severity (Agee and Skinner, 2005; Kolden, 2019), quantifying
their economic benefits remains limited (Kline, 2004).2 Despite calls for the widespread adoption
of these practices as a means to reduce economic costs (USFS and State of California, 2020; State
of California, 2021), the existing economic literature has focused on identifying the determinants
of fuel treatment activity and fire suppression efforts rather than the relationship between the two
(Plantinga et al., 2022; Baylis and Boomhower, 2023; Bayham and Yoder, 2020; Wibbenmeyer
et al., 2019; Anderson et al., 2023).

We assess whether fuel treatments mitigate the economic costs of wildfires by investigating
fires igniting on United States Forest Service (USFS) land in the Pacific Northwest from 2006
to 2023. Our analysis focuses on two key wildfire outcomes: fire size and suppression costs.
While suppression costs represent only a portion of the total social cost imposed by wildfires, their
contribution is significant. According to the National Interagency Fire Center, federal agencies
spent $55 billion on wildfire suppression from 1985 to 2022.3 Similarly, fire size is often cited as
a proxy for broader wildfire impacts, including smoke-related health costs and structure loss (e.g.,
Wen et al., 2023). We find evidence that fuel treatments jointly reduce fire size and suppression
costs and are cost-effective for mitigating wildfire damages.

The lack of research linking fuel treatment activities’ impact on economic outcomes is likely
due to the environmental and spatial-temporal complexities of wildfires, fuel treatments, and fire
suppression efforts, resulting in at least two empirical challenges in identifying the causal effects
of fuel treatments. First, the location and extent of fuel treatments and fire suppression efforts
are jointly determined by socio-economic and environmental factors (Plantinga et al., 2022; Baylis
and Boomhower, 2023; Bayham and Yoder, 2020; Wibbenmeyer et al., 2019; Anderson et al.,
2023). For example, fuel treatments and fire suppression efforts are often allocated to protect
areas with assets at risk. Consequently, estimation strategies that compare fires (or areas) with and

2Previous studies have focused on the cost-effectiveness of fuel treatments in reducing high-severity fires (Hart-
sough et al., 2008). Research on economic benefits, however, has relied on fire simulations (Taylor et al., 2015;
Thompson et al., 2013b) or meta-analyses of individual case studies (Hjerpe et al., 2024; Hunter and Taylor, 2022) to
assess the economic impact of fuel treatments.

3Measured in 2017 dollars, not including expenditures from state and local suppression efforts.
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without nearby fuel treatments will suffer from simultaneity bias and likely result in findings of
small to zero impacts on suppression costs (Sánchez et al., 2019; Yoder and Ervin, 2012). Second,
even if fuel treatments are conducted exogenously, the allocation of suppression effort across fires
mediates the effect of fuel treatments on the size and cost of suppressing a fire. For example, if fuel
treatments and suppression effort are complements-in-production, more resources will be allocated
toward fires igniting near fuel treatments, increasing suppression costs. Indeed, we demonstrate
that fuel treatments could actually increase the size and suppression cost of nearby fires, even if
they collectively decrease the size and costs of all fires.4 Thus, comparing fires adjacent to fuel
treatments to those that are not may not provide an accurate assessment of the overall benefits
associated with fuel treatments.

We address the empirical challenges of identifying the economic benefits of fuel treatments in
the following ways. First, building on Baylis and Boomhower (2023), we employ a fixed-effects
strategy that compares fires igniting within the same national forest and time of year but are ex-
posed to varying levels of nearby fuel treatments. Our strategy controls for a broad suite of factors
known to influence wildfire behavior and suppression costs, including topographic (e.g., slope, as-
pect), weather (e.g., temperature, wind), vegetation (e.g., fuel type, canopy cover), economic (e.g.,
proximity to roads and housing units), and historical wildfire risk factors (e.g., mean fire return
interval). Second, we employ an instrumental variable strategy that exploits exogenous variation
in fuel treatments arising from spatial variation in protected areas established under the Northwest
Forest Plan (NWFP). These protected areas, created to conserve the northern spotted owl (NSO)
under the Endangered Species Act (ESA), inadvertently restrict fuel treatment activities due to
increased management restrictions and litigation risks (Johnson et al., 2023). Spatial variation in
protected areas generates quasi-random variation in fuel treatment activity because their boundaries
were based on the ecological needs of the NSO, other endangered species, and sensitive habitats
(Gaines et al., 2022; Johnson et al., 2023). However, because the NWFP represented a compromise
between timber production and species conservation, substantial portions of NSO critical habitat
and old-growth forests were left unprotected (Gaines et al., 2010; Johnson et al., 2023; USFWS,
2012). As a result, fires ignite in comparable environments inside and outside protected areas but
are exposed to differing levels of nearby fuel treatments for reasons unrelated to potential fire sup-
pression costs or fire size. Finally, using a stylized model of fire suppression effort allocation,
we derive a sufficient condition under which fuel treatments generate overall economic benefits,
considering both wildfire damages and suppression costs. We demonstrate that a negative effect
of fuel treatments on both fire size and suppression costs is sufficient evidence that fuel treatments
accrue collective economic benefits across all fires.

We find that fires igniting in protected areas are similar in their observable characteristics to

4Rideout et al. (2008) derives a similar result using a similar model of fuel treatments and fire suppression effort.
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those igniting in unprotected areas yet receive 13.9% less fuel treatments close to their ignition
point, highlighting the impact of environmental protections on treatment activities. Fires igniting
in protected areas are also 17.9% more costly to suppress than those igniting outside of protected
areas, on average. Taken together, these estimates imply that a one-percent increase in nearby fuel
treatments reduces the cost of suppressing wildfires by 1.287 percent. We also find that fuel treat-
ments reduce fire size, but the statistical significance of this effect is not robust to different samples
or specifications. Our theoretical results suggest the effect of fuel treatments on fire size may be
attenuated due to the endogenous reallocation of suppression resources away from fires that ignite
near treated areas. Applying a bootstrap intersection-union hypothesis test to our sufficient condi-
tion, we find evidence that fuel treatments jointly reduce fire size and suppression costs, thereby
providing overall economic gains. Building on this evidence, we estimate the counterfactual eco-
nomic benefits from reduced suppression costs that would have been realized had the size of all fuel
treatments in our sample period been proportionally larger. Our conservative back-of-the-envelope
calculations suggest that for every dollar spent on fuel treatments, four to seven dollars are saved in
fire suppression costs, depending on the level of increased treatment activity. These results indicate
that fuel treatments are a cost-effective strategy for mitigating wildfire risks.

Our study makes several contributions. We demonstrate the potential role of public investments
in natural capital as a cost-effective means of mitigating risks from natural disasters. Previous re-
search has highlighted the government’s role in bearing the cost of protection from natural disasters,
often unintentionally encouraging development in high-risk areas (Kousky et al., 2006; Boustan
et al., 2012; Baylis and Boomhower, 2023). While insurance can provide financial protection to pri-
vate property, insurance markets face significant challenges adapting to the increasing risks posed
by natural disasters due to risk information asymmetries and the spatially correlated, catastrophic
nature of natural disasters (Busby et al., 2013; Kousky, 2019; Wagner, 2022a,b; Boomhower et al.,
2024). Moreover, property insurance does not protect against the costs of natural disasters that
accrue indirectly, such as through smoke exposure from wildfires that frequently ignite on public
land.5 This has led policymakers to seek cost-effective investments to mitigate natural disaster
risks, including mandating fire-resilient building codes for new homes built in California (Baylis
and Boomhower, 2021). We demonstrate that public investments in natural capital, such as fuel-
reduction treatments, can also be a cost-effective means of protection from natural disasters.

Our analysis also highlights how environmental protections can inadvertently hinder wildfire
management and fuel treatment activities, potentially placing the very species they aim to protect
at greater risk. Land managers and fire ecologists have long acknowledged the unintended effects
of the NWFP reserves on fuel treatment and wildfire activity in the Pacific Northwest (Spies et al.,

5For example, Borgschulte et al. (2022) estimate a $125 billion/year reduction in quarterly earnings due to smoke
exposure.
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2019; Hessburg et al., 2021). Previous studies have shown that increasing areas of high-severity
fire have been the leading cause of loss in northern spotted owl habitat (Davis et al., 2016) and
old-growth forests (Davis et al., 2015) since the NWFP’s inception. Others have pointed out the
conflicting incentives of land managers under the ESA due to fuel treatments’ short-term negative
impacts on northern spotted owl habitat (Spies et al., 2018; North et al., 2012). The present study
contributes to this literature by estimating the magnitude by which these policies have hampered
fuel treatment activity in the region and how this has translated into increasing the public burden
of fighting wildfires.

More broadly, our study underscores the importance of reconciling competing objectives be-
tween environmental protections and climate adaptation strategies. Existing literature has empha-
sized the impact of environmental protections on private land values, land use, and labor markets
(Auffhammer et al., 2020; Nelson et al., 2017; Ferris and Frank, 2021). These challenges are not
unique to wildfire management. Indeed, similar tensions are likely to emerge in other contexts,
such as invasive species management, where restrictions on proactive measures may enable harm-
ful species to spread (Bradley et al., 2023); carbon crediting programs, which may prioritize carbon
sequestration over broader ecosystem services (Venter et al., 2009); and the extraction of critical
minerals for renewable energy, which may conflict with habitat conservation efforts (Sovacool
et al., 2020). Addressing these conflicts requires thoughtful policy design that balances long-term
climate adaptation goals with immediate and local environmental priorities.

The paper is organized as follows. Section 1 provides background on wildland fire institutions,
fuel treatments, and the Northwest Forest Plan. Section 2 establishes a simple model of fuel treat-
ment and fire suppression effort to motivate our empirical approach and inform the interpretation of
our estimates. Section 3 introduces our research design and discusses the data. Section 4 presents
our estimates of the marginal effect of fuel treatment on fire suppression costs and size, discusses
several robustness checks, and explores the counterfactual benefits of increased fuel treatment ac-
tivity. Section 5 concludes the paper.

1 Background

1.1 Wildland Firefighting & Fuel Treatments in the Western U.S.

The Great Fire of 1910, an apocalyptic blaze that burned 3 million acres in 2 days in Washing-
ton, Idaho, and Montana, marked an important turning point in the management of U.S. national
forests (Egan, 2011). Only five years after its founding, the USFS was severely underfunded and
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under political threat of dismantling.6 However, the heroic deeds of forest service rangers, along
with the shock and terror from the fire, dramatically changed the public perceptions of the USFS,
ultimately leading to the USFS’s expansion and a major shift in its mission statement: from prior-
itizing conservation to fighting forest fires. Prioritizing wildfire suppression led to the “10 a.m.”
policy instituted by the USFS in 1935, which stated the goal to successfully contain any fires by 10
a.m. the following day in its initial report (Loveridge, 1944).

Shortly thereafter, other federal, state, and local government agencies followed in the USFS’s
footsteps to implement similar wildfire suppression policies (Pyne, 2008). A wildfire’s ignition
location and geographic extent broadly determine the financial and operational responsibility for
suppressing a wildfire (Hoover and Lindsay, 2017), with the nearest fire management authority
usually attempting to quickly extinguish it in what is known as the “initial attack.” For exam-
ple, the primary responsibility for fires igniting on National Forest land rests with the USFS. In
contrast, the state is responsible for fires starting in unincorporated private land (e.g., CAL FIRE
in California). When wildfires are large enough to affect multiple agencies and jurisdictions, lo-
cal Emergency Operation Centers and multi-agency coordinating groups facilitate the sharing of
information, objectives, and the allocation of resources between agencies.

Successful wildfire suppression by federal, state, and local government agencies has uninten-
tionally led to increased fuel loads that are in marked disequilibrium with the underlying ecological
template across much of the western U.S. (North et al., 2022). For example, 5-12% of California
burned annually pre-1800, a large portion of which occurred through cultural indigenous burning
(Stephens et al., 2007). Indeed, it is an often-repeated mantra that the major ecological issue fac-
ing western forests today is the relative absence of fire, which is in direct conflict with popular
information campaigns like “Smoky the Bear” that emphasize wildfire suppression.

Fuel treatments, such as prescribed fires or mechanical tree removal, aim to return forest ecosys-
tems to their more natural state by emulating the natural processes of low-severity fires by reducing
fuel loads, maintaining open stands of trees, and eliminating shade-tolerant species of trees that are
more susceptible to wildfire. Because such ecosystems are adapted to frequent low-severity fires,
forests that receive such fuel treatments experience fewer high-severity wildfires and thus enhance
the ecosystem services associated with such forests through reduced smoke exposure, increased
nutrient cycling, water quality, and carbon sequestration post-wildfire, along with the promotion
of biodiversity (Kalies and Yocom Kent, 2016; Converse et al., 2006; Boerner et al., 2009; Finkral
and Evans, 2008; Yocom Kent et al., 2015; Richter et al., 2019).

Although there is no rigorous causal evidence directly linking fuel treatments to reductions in
fire suppression costs, both qualitative and fire simulation evidence suggests that fuel treatments

6For example, one forest service ranger working at poverty level wages was the sole employee responsible for
over 300,000 acres of land (Egan, 2011).

6



help decrease these costs by reducing the size and severity of wildfires (Romero andMenakis, 2013;
Murphy et al., 2007; Graham et al., 2009; Thompson et al., 2013b). Fuel treatments can enhance
the effectiveness of both “direct” and “indirect” firefighting efforts, which likely contributes to cost
savings (Romero and Menakis, 2013). Direct attack involves firefighting actions performed near
the fireline, such as constructing control lines, smothering flames, or applying water or chemical
retardants. These efforts are only feasible when wildfires have sufficiently low flame lengths—a
condition that fuel treatments help create. Indirect attack, on the other hand, consists of operations
conducted at some distance from the fire’s perimeter. This may involve using fuel breaks or creating
firelines where combustible material is removed to halt a fire’s progression.7

By increasing the effectiveness of direct and indirect attacks, fuel treatments reduce reliance
on the more costly aerial attack methods, which involve applying water or chemical retardant via
helicopters or fixed-wing aircraft. Aerial attacks require significant capital investment and are
considerably more expensive than ground-based suppression tactics (Calkin et al., 2014; Thompson
et al., 2013a; Stonesifer et al., 2021).

1.2 The Northwest Forest Plan Reserve System

It is said that when President JimmyCarter was on his way to view the devastation caused by the
eruption of Mt. St. Helens in 1980, he expressed horror at the sight of a shaven landscape. State
officials had to gently explain that what Carter saw was clear-cut logging and not the aftermath
of the explosion (Dietrich, 2010). The emotion brought about by the sight of clear-cuts and their
deleterious effects on ecosystems led to one of themost hotly contested public debates: What should
be the management objectives of federal forest owners? The northern spotted owl (NSO) was the
centerpiece of this debate. It became not only a symbol for old-growth forest preservation but also
the legal basis from which federal forest owner objectives changed through the ESA. The debate
culminated in the early 1990s, and within only five years, federal forests in the Pacific Northwest
underwent a sudden and tremendous shift in management focus from providing sustained yield
timber to conserving biodiversity with emphasis on endangered species (Thomas et al., 2006).

After listing the NSO as threatened by the U.S. Fish & Wildlife Service (USFWS), 6.9 million
acres of federal forest were designated as critical habitat in 1992, encompassing parts of Washing-
ton, Oregon, and northern California. To build on this protection, the Clinton administration sub-
sequently initiated the Northwest Forest Plan (NWFP) in 1994, significantly reducing old-growth
logging and timber harvest by establishing a system of reserves spanning over 24.4 million acres
of federal forest land aimed at conserving old-growth habitats, NSO populations, and essential wa-

7Fuel treatments also facilitate “back-burning,” a form of indirect attack where a fire is deliberately set to reduce
fuel ahead of the wildfire. Typically, back-burning requires favorable wind conditions, but fuel treatments lessen the
reliance on such conditions by proactively removing fuel before a fire occurs.
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tersheds and riparian zones making it one of the largest temperate forest serve systems in the world
(Gaines et al., 2022; Spies et al., 2018). Ultimately, timber harvests on federal lands in the region
declined by 80–90%, resulting in significant job losses and economic hardships for many rural,
timber-dependent communities (Spies et al., 2019; Ferris and Frank, 2021).

During the formulation of the NWFP, the Clinton administration faced stark trade-offs between
timber production and species conservation (Johnson et al., 2023). Various reserve options were
proposed, each with different protections for “working” forests—lands deemed sufficiently pro-
ductive for timber harvest. The final plan established two main land designations (Figure 1). Late-
Successional Reserves (LSRs), spanning 7.4 million acres, were designed to support the nesting,
roosting, foraging, and dispersal needs of the northern spotted owl (NSO), along with other endan-
gered species and sensitive habitats.8 These reserves were subject to strict management restrictions
limiting timber harvest. Meanwhile, Matrix lands, comprising approximately 4 million acres (in-
cluding 2 million acres of old-growth forest), were designated as areas where most silvicultural ac-
tivities would continue, primarily through selective logging and thinning.9 This compromise meant
that while many old-growth forests gained protection from LSR designation (3.7 million acres), a
substantial portion remained open to more intensive management practices. Notably, while LSRs
were designed to protect the NSO, they do not entirely align with either historical or critical habitat
designations by the USFWS. For example, approximately 40% of historical nesting owl pairs and
40% of critical habitat areas designated in 2012 are located withinMatrix lands rather than reserved
areas (Gaines et al., 2010; Johnson et al., 2023; USFWS, 2012).

Despite recognizing the importance of active management in fire-prone forests, the NWFP has
unintentionally restricted fuel treatment activities in LSRs due to conservative interpretations of its
rules and the potential for litigation from environmental groups (Johnson et al., 2023). Coupled
with a century of active fire suppression, forested areas within LSRs have experienced significant
fuel build-up, particularly in dry forests east of the CascadeMountain Range, where fuel levels have
diverged considerably from their natural state. These dry forests, historically shaped by frequent
low-severity wildfires, are much more fire-prone than the wetter forests to the west (Reilly et al.,
2018), leading many scientists to criticize the inclusion of dry forests in the NWFP reserve system
(Gaines et al., 2022).10 Conversely, Matrix lands, with fewer management restrictions, permit more
intensive timber harvests and silvicultural activities, which have enabled significantly more acres
of fuel treatment compared to LSRs. This contrast highlights the uneven spatial distribution of fuel

8For example, LSRs were planned to be large enough to sustain NSO populations and positioned close enough to
facilitate owl dispersal (Johnson et al., 2023).

9Thinning and selective logging dominate silvicultural activities in Matrix areas due to the collapse of traditional
timber sales in the early 2000s, largely driven by environmental litigation. This shift led agencies to focus on thinning
younger forests to offset the reduced harvest from older forests in Matrix areas (Johnson et al., 2023).

10For example, dry conifer forests historically experienced wildfires every 5-35 years, while wet conifer forests
experienced wildfires every one to four hundred years (Parks et al., 2023; Johnson et al., 2023).
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Figure 1: Distribution of Matrix and LSR land designations in the Northwest Forest Plan area

Notes: Matrix areas are shaded in bright green, LSRs in purple, and national forests in light green.

treatments across national forests in the Pacific Northwest (Figure 2a).

2 Conceptual Framework

In this section, we present a stylized model to identify the mechanisms through which fuel
treatments influence fire size and suppression costs and to clarify the main empirical challenges
we face in identifying and interpreting such effects. The model illustrates how the effect of fuel
treatments is mediated by the endogenous response of a fire manager as they allocate suppression
effort across fires. In turn, the model explains why fuel treatments may or may not reduce the size
or suppression cost of a nearby fire, even if they reduce the total acres burned and suppression
costs across all fires. We use the model to derive a sufficient condition under which fuel treatments
collectively provide economic benefits across all fires, resulting in a testable hypothesis that informs
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Figure 2: Trends in Fuel Treatments & Fire Suppression Costs in Matrix & LSRs
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our empirical framework.11

2.1 Setup

A fire manager allocates fire suppression effort 𝐸𝑖 toward fighting 𝑖 = 1, … , 𝑁 fires burning
simultaneously, conditional on an existing distribution of fuel treatments across the landscape. We
assume that a fire manager’s objective is to minimize expected losses, which are equal to the sum
of expected damages and fire suppression costs, subject to a resource constraint on suppression
effort.12 The fire manager’s problem can be expressed as:

max
𝐸1,...,𝐸𝑁

−
𝑁

∑
𝑖=1

[𝐿(𝑋𝑖) ⋅ 𝑆(𝐸𝑖, 𝐹𝑖) + 𝐶(𝐸𝑖)] s.t.
𝑁

∑
𝑖=1

𝐸𝑖 ≤ ̄𝐸,

where 𝐹𝑖 denotes the volume of fuel treatments near fire 𝑖. For simplicity, we assume suppression
costs 𝐶(𝐸𝑖) are the same across fires, conditional on effort. We also assume that resources move
from cheaper sources (e.g., hand crews) to more expensive sources (e.g., dozers and air tankers)

11All derivations of our results can be found in Appendix 1.
12This is a version of the “least cost plus loss” model, which has been used to model fire manager behavior for

many economic fire suppression models (Donovan and Rideout, 2003). More general models provide similar, yet
more nuanced, insights on the tradeoffs facing a fire manager (Bayham and Yoder, 2020).
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as effort is expanded, resulting in a suppression cost function that is increasing and convex in
effort. Expected fire damages are assumed to be linear in fire size 𝑆(𝐸, 𝐹), which is assumed to be
decreasing and convex in effort and fuel treatments due to diminishing returns. 𝐿(𝑋𝑖) represents
the constant loss associated with a one-unit increase in fire size, which is a function of assets-at-
risk, 𝑋𝑖. Since fuel treatments are pre-determined, the costs of implementing fuel treatments do
not enter into the calculus of a fire manager. We compare the economic benefits of fuel treatments
to their implementation costs in our empirical application in Section 4.2.

The necessary and sufficient conditions associated with a fire manager’s effort allocation, 𝐸∗
𝑖 ,

are:

−𝐿(𝑋𝑖)
𝜕𝑆𝑖(𝐸∗

𝑖 , 𝐹𝑖)
𝜕𝐸𝑖

= 𝜕𝐶(𝐸∗
𝑖 )

𝜕𝐸𝑖
+ 𝜆 ∀𝑖 ∈ {1, ..., 𝑁}

𝜆 ⋅ (
𝑁

∑
𝑖=1

𝐸∗
𝑖 − ̄𝐸) = 0,

where 𝜆 denotes the Lagrange multiplier associated with the resource constraint. The first-order
conditions reflect that the marginal benefit of allocating one unit of effort to suppress a fire, in
terms of the foregone damages, must be equal to its marginal suppression cost and the shadow cost
of effort for 𝐸∗

𝑖 to be optimal. They also reflect the equi-marginal principle: effort is optimally
allocated across fires when the marginal net benefit of effort is equal across all fires. Further, the
first-order conditions demonstrate that more suppression effort will be devoted to fires with higher
levels of assets-at-risk (Plantinga et al., 2022; Baylis and Boomhower, 2023).

2.2 The Economic Benefits of Fuel Treatments

We are ultimately interested in understanding the economic benefits provided by fuel treat-
ments. Within the context of our conceptual model, this equates to answering: how does the optimal
value of a fire manager’s program change in response to amarginal increase in fuel treatments? Let-
ting 𝑉 (𝐹1, ..., 𝐹𝑁) denote the value function of a fire manager’s program evaluated at the optimal
allocation of suppression effort, we can employ the envelope theorem to show that fuel treatments
are economically beneficial under one condition.

Result 1. Fuel treatments increase the value of a fire manager’s economic program provided the
direct effect of fuel treatments on fire size is negative:

𝑑𝑉 (𝐹1, ..., 𝐹𝑁)
𝑑𝐹𝑖

= −𝐿(𝑋𝑖) ⋅ 𝜕𝑆(𝐸∗
𝑖 , 𝐹𝑖)

𝜕𝐹𝑖
> 0 ⟺ 𝜕𝑆(𝐸∗

𝑖 , 𝐹𝑖)
𝜕𝐹𝑖

< 0. (1)

Intuitively, while fuel treatments will induce changes in suppression effort allocation, effort will

11



be adjusted to balance the marginal benefits of reduced fire damages with the marginal cost of
fire suppression so that the behavioral response will not have a first-order effect. Thus, the direct
effect of fuel treatments on fire size 𝜕𝑆(𝐸,𝐹)

𝜕𝐹 is a sufficient condition for determining whether fuel
treatments have positive economic benefits.

Unfortunately, Equation (1) has several practical limitations. First, even if fuel treatments were
randomly assigned, we cannot empirically identify the direct effect of fuel treatments on fire size.
Rather, we can only identify the total effect of fuel treatments on fire size, 𝑑𝑆(𝐸,𝐹)

𝑑𝐹 , which includes
the mediating response of fire suppression effort, 𝑑𝐸∗

𝑑𝐹 . Second, quantifying the marginal benefit
of fuel treatments is complicated by the fact that they depend on the potential losses associated
with assets-at-risk, 𝐿(𝑋), which are heterogeneous and generally difficult to assess. Finally, the
benefits associated with marginal changes in fuel treatments cannot be used directly to evaluate
counterfactual policy changes that induce large, non-marginal increases in fuel treatments, as we
do here (Chetty, 2009). In light of these limitations, how can we assess whether fuel treatments
provide economic benefits?

2.3 The Impacts of Fuel Treatments on Fire Size and Suppression Costs

We now turn to understanding how fire suppression effort, costs, and fire size respond to dif-
ferences in the volume of nearby fuel treatments, and, in turn, whether such effects can be used
to assess the overall benefits of fuel treatments. The results depend on whether fuel treatments
and fire suppression effort are q-complements or q-substitutes (Hicks, 1970). Specifically, fuel
treatments and fire suppression effort are q-substitutes if an increase in fuel treatments 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠
the marginal productivity of suppression effort on fire size, which can be expressed formally as
−𝜕2𝑆(𝐸,𝐹)

𝜕𝐹𝜕𝐸 < 0.13 Intuitively, if fuel treatments decrease the marginal productivity of suppression
effort, a fire manager will reallocate effort away from fires with nearby fuel treatments until the
marginal benefit is equal to its marginal cost (including the shadow cost of effort if the resource
constraint is binding). The opposite is true if fuel treatments increase the marginal productivity of
suppression effort. This result has implications for fuel treatments’ effects on suppression costs
and fire size.

Result 2. Fuel treatments will decrease fire suppression effort if and only if fuel treatments and
suppression effort are q-substitutes:

𝑑𝐸∗
𝑖

𝑑𝐹𝑖
< 0 ⟺ −𝜕2𝑆(𝐸𝑖, 𝐹𝑖)

𝜕𝐹𝑖𝜕𝐸𝑖
< 0.

13Note that since 𝜕𝑆(𝐸,𝐹)
𝜕𝐸 < 0, we can characterize themarginal benefit of suppression effort as−𝐿(𝑋)⋅ 𝜕𝑆(𝐸,𝐹)

𝜕𝐸 .
Hence, we write the effect of fuel treatments on the marginal productivity of suppression effort using the cross-partial
elasticity with a negative.
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The opposite is true if fuel treatments and suppression effort are q-complements.

Corollary 2.1. Fuel treatments will decrease fire suppression costs if and only if fuel treatments
and suppression effort are q-substitutes.

𝑑𝐶(𝐸∗
𝑖 )

𝑑𝐹𝑖
= 𝑑𝐶(𝐸∗

𝑖 )
𝑑𝐸𝑖

⋅ 𝑑𝐸∗
𝑖

𝑑𝐹𝑖
< 0 ⟺ 𝑑𝐸∗

𝑖
𝑑𝐹𝑖

< 0 ⟺ −𝜕2𝑆(𝐸𝑖, 𝐹𝑖)
𝜕𝐹𝑖𝜕𝐸𝑖

< 0.

The opposite is true if fuel treatments and suppression effort are q-complements.

Corollary 2.2. Fuel treatments will decrease fire size if fuel treatments and suppression effort are
q-complements.

𝑑𝑆(𝐸∗
𝑖 , 𝐹𝑖)

𝑑𝐹𝑖
= 𝜕𝑆(𝐸∗

𝑖 , 𝐹𝑖)
𝜕𝐸𝑖

⋅ 𝑑𝐸∗
𝑖

𝑑𝐹𝑖
+ 𝜕𝑆(𝐸∗

𝑖 , 𝐹𝑖)
𝜕𝐹𝑖

< 0 ⟺ 𝑑𝐸∗
𝑖

𝑑𝐹𝑖
> 0 ⟺ −𝜕2𝑆(𝐸𝑖, 𝐹𝑖)

𝜕𝐹𝑖𝜕𝐸𝑖
> 0.

In contrast, fuel treatments may or may not decrease fire size if fuel treatments and suppression
effort are q-substitutes.

Corollary 2.1 is a direct implication of Result 2, as suppression costs are assumed to be a mono-
tonically increasing function of suppression effort. Thus, fuel treatments will not necessarily re-
duce the suppression costs of nearby fires. Corollary 2.2 reaches a similar conclusion for a fire’s
size. Intuitively, the negative direct effect of fuel treatments on a fire’s size, 𝜕𝑆(𝐸𝑖,𝐹𝑖)

𝜕𝐹𝑖
, will be

enhanced through the indirect effect of increasing suppression effort, 𝜕𝑆(𝐸𝑖,𝐹𝑖)
𝜕𝐸𝑖

⋅ 𝑑𝐸𝑖
𝑑𝐹𝑖

, under q-
complementarity. In contrast, if fuel treatments and suppression effort are q-substitutes, then the
direct effect of fuel treatments on a fire’s size will be offset by a reduction of suppression effort,
leaving the total effect ambiguous. Thus, fuel treatments are not guaranteed to reduce the size of
nearby fires and depend critically on the endogenous effort allocation response of fire managers.

The relationship between fuel treatments and suppression effort has important implications for
suppression costs and fire size. Determining whether fuel treatments and suppression effort are
q-complements or q-substitutes requires an understanding of whether fuel treatments dispropor-
tionately enhance some units of effort relative to others. For example, fuel treatments and suppres-
sion effort are q-substitutes if fuel treatments disproportionately enhance the effectiveness of hand
crews relative to air tankers, and q-complements if fuel treatments disproportionately enhance the
effectiveness of air tankers relative to hand crews. Qualitative evidence suggests that fuel treat-
ments enhance the ability of hand crews to conduct direct and indirect attacks, suggesting that fuel
treatments may reduce expected fire sizes relatively more for low levels of fire suppression effort
allocations (Romero and Menakis, 2013). If so, then fuel treatments become substitutable for fire
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suppression effort and lead the fire manager to allocate fewer resources to fighting fires that occur
close to fuel treatments.

Our results thus far have focused on the effects of fuel treatments on a nearby fire. The bind-
ing constraint of effort resources also has implications for the effects of fuel treatments on other
fires. Intuitively, if fuel treatments decrease the marginal productivity of suppression effort, a fire
manager will reallocate effort away from the fire near fuel treatments. If the effort constraint is
binding, then this effort is allocated toward other fires until marginal benefits minus marginal costs
are equal across all fires. The opposite is true if fuel treatments increase the marginal productivity
of suppression effort.

Result 3. Fuel treatments will induce spillovers onto other fires if the suppression effort resource
constraint binds. Specifically, fuel treatments will direct suppression effort toward other fires if
they are q-substitutes,

𝑑𝐸∗
𝑗

𝑑𝐹𝑖
> 0 ⟺ −𝜕2𝑆(𝐸𝑖, 𝐹𝑖)

𝜕𝐹𝑖𝜕𝐸𝑖
< 0,

and draw suppression effort away from other fires if they are q-complements.

Corollary 3.1. If the effort resource constraint binds, fuel treatments may increase or decrease
total fire suppression costs, regardless of whether fuel treatments and suppression effort are q-
complements or q-substitutes.

Corollary 3.2. If the effort resource constraint does not bind, fuel treatments will decrease total
fire suppression costs if and only if fuel treatments and fire suppression efforts are q-substitutes.

The immediate implication of Result 3 is that our empirical strategy will need to consider a
possible violation of the stable unit treatment value assumption (SUTVA). That is, one fire’s effect
of being close to a fuel treatment will depend on the proximity of all other fires to fuel treatments.
We discuss how we address this challenge in Section 3. Corollary 3.1 demonstrates that these
spillover effects also have implications for fuel treatments’ effect on total fire suppression costs
across all fires. To understand how total suppression costs could go up, consider the situation in
which there are only two fires and 𝐸∗

1 > 𝐸∗
2 since there are more assets at risk for Fire 1. Now,

suppose that Fire 2 is close to a fuel treatment and that fuel treatments are q-substitutes to suppres-
sion effort, which implies that even more effort is now directed toward Fire 1. Since suppression
costs are convex in effort, this implies that total suppression costs would increase. Corollary 3.2
demonstrates that total suppression costs are guaranteed to decrease with fuel treatments in a situ-
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ation of q-substitutability and a non-binding resource constraint—i.e., effort is directed away from
nearby fires and not re-allocated to other fires, thereby decreasing suppression costs.

2.4 Testable Implications

The results thus far suggest that fuel treatments will provide positive economic benefits so
long as they have a negative direct effect on fire size. However, we cannot directly test for the
existence of such an effect as we can only empirically identify the total effect of fuel treatments
on fire size, which includes the mediating response of fire suppression effort. Moreover, we have
also demonstrated that fuel treatments may not reduce suppression costs or fire size in the presence
of endogenous fire suppression effort, even if they provide overall economic benefits. Thus, fuel
treatments’ effect on fire suppression costs and fire size may not provide an accurate assessment
of the overall benefits associated with fuel treatments. How, then, can we know if fuel treatments
are economically beneficial?

We now demonstrate how our sufficient condition for economic benefits (Result 1) can be
tested empirically by implication. We then show that if this condition is met, then the effect of fuel
treatments on suppression costs can be used to (partially) quantify these benefits, so long as the
resource constraint is not binding.

Recall that the total effect of fuel treatments on fire size is

𝑑𝑆(𝐸∗
𝑖 , 𝐹𝑖)

𝑑𝐹𝑖
= 𝜕𝑆(𝐸∗

𝑖 , 𝐹𝑖)
𝜕𝐸𝑖

⋅ 𝑑𝐸∗
𝑖

𝑑𝐹𝑖
+ 𝜕𝑆(𝐸∗

𝑖 , 𝐹𝑖)
𝜕𝐹𝑖

.

Now, suppose that fuel treatments and suppression effort are q-substitutes, which implies 𝑑𝐸∗
𝑖

𝑑𝐹𝑖
< 0

(Result 2). Then we have the following:

𝑑𝑆(𝐸∗
𝑖 , 𝐹𝑖)

𝑑𝐹𝑖
< 0 ⟺ 𝜕𝑆(𝐸∗

𝑖 , 𝐹𝑖)
𝜕𝐹𝑖

< −𝜕𝑆(𝐸∗
𝑖 , 𝐹𝑖)

𝜕𝐸𝑖
⋅ 𝑑𝐸∗

𝑖
𝑑𝐹𝑖

< 0 ⟹ 𝜕𝑆(𝐸∗
𝑖 , 𝐹𝑖)

𝜕𝐹𝑖
< 0.

That is, a negative total effect of fuel treatments on fire size, including the endogenous effort re-
sponse, implies the direct effect of fuel treatments on fire size is negative, so long as fuel treatments
and suppression effort are q-substitutes. From Corollary 2.1, we know that the impact of fuel treat-
ments on suppression costs is a sufficient condition for the q-substitutability of fuel treatments and
suppression effort:

𝑑𝐶(𝐸∗
𝑖 )

𝑑𝐹𝑖
< 0 ⟺ 𝑑𝐸∗

𝑖
𝑑𝐹𝑖

< 0.

Thus, if the total effect of fuel treatments on fire size and suppression costs are both negative,
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then fuel treatments are economically beneficial. Additionally, if the resource constraint is also
not binding, then fuel treatments will decrease total fire suppression costs (Corollary 3.2) without
increasing the size of fires. In this case, we can say that fuel treatments’ effect on suppression costs
is a partial measure of their economic benefits.

To summarize, fuel treatments are economically beneficial if they have a direct and negative
effect on fire size, but we cannot empirically identify this effect. Instead, we can test for their
economic benefits by implication through the null hypothesis 𝐻𝑜 ∶ 𝑑𝑆(𝐸∗

𝑖,𝐹𝑖)
𝑑𝐹𝑖

≥ 0 or 𝑑𝐶(𝐸∗
𝑖)

𝑑𝐹𝑖
≥ 0.

Rejecting the null implies 𝜕𝑆(𝐸∗
𝑖,𝐹𝑖)

𝜕𝐹𝑖
< 0, i.e., that fuel treatments are economically beneficial. If

we can further show that fire suppression effort is not subject to a binding resource constraint, then
we can partially quantify the economic benefits of fuel treatments by estimating their effect on
suppression costs. The following empirical framework draws from these results to quantify and
test for the economic benefits of fuel treatments and compare them to their implementation costs.

3 Empirical Framework

We aim to identify the effect of fuel treatments on fire suppression costs and fire size by taking
advantage of variations in fire ignition and fuel treatment locations within national forests. In-
tuitively, this strategy compares the suppression cost and size of fires that start within the same
national forest but are exposed to different amounts of fuel treatments within a certain radius of
their ignition location (Figure 3a). Such comparisons, however, may be subject to bias as fuel
treatments and fire suppression effort are jointly determined via socioeconomic and environmental
factors. For example, one of the main goals of implementing fuel treatments is to protect communi-
ties most at risk from wildfires. Hence, fuel treatments are typically located closer to homes in the
WUI. At the same time, wildfire suppression effort, and thus costs, are disproportionately higher
for fires that threaten homes (Bayham and Yoder, 2020; Baylis and Boomhower, 2023; Plantinga
et al., 2022). Additionally, the costs of conducting fuel treatments correlate with topographic (e.g.,
lower slopes and elevations), vegetation characteristics (e.g., site productivity), and economic (e.g.,
proximity to roads) variables that also influence fire suppression costs. To address these concerns,
we take advantage of exogenous variation in fuel treatment locations arising from spatial variation
of late-successional reserves (LSRs) from the Northwest Forest Plan.14

14The interested reader can turn to Figure A1 and Section A3 in the Supplemental Appendix for a visual repre-
sentation of the data generating process of fuel treatments and wildfires along with a more detailed discussion of the
sources endogeneity driving fuel treatment location and fire suppression costs.
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Figure 3: Baseline & IV Identification Strategies

(a) Baseline

Acres Treated
0
> 0 Acres of FT

(b) Instrumental Variables

Acres Treated
0
> 0 Acres of FT

Notes: The panels above display fire ignition locations (red) and fuel treatments (blue) within the Methow Valley Ranger District
during the 2013 fire season. The left panel illustrates the “Baseline” estimation strategy, which leverages the proximity of fire ignitions
to fuel treatments occurring within the same national forest and season. The right panel depicts the “Instrumental Variable” approach,
highlighting protected areas (LSRs) in purple and unreserved areas (Matrix) in light green.

3.1 Data

We construct a dataset that combines administrative data of NWFP land use allocations with
fuel treatment and wildfire outcomes in the Pacific Northwest from 2006-2023. Our data come
from various sources with varying degrees of spatial and temporal coverage. A summary of the
main data sources for wildfire costs, fuel treatments, NWFP land use allocations, and the name,
source, and description of all control variables used in our analysis are provided in Table A6 and
Table A7.

Information on the cost, date, and ignition location of wildfires come from two sources spanning
different periods. The National Fire and Aviation Management Web Applications (FAMWEB),
used in Baylis and Boomhower (2023), comprises wildfires igniting from 2006-2014 (FAMWEB,
2023). Since the FAMWEB collection system was discontinued in 2014, we supplement this with
post-2014 data from the National Interagency Fire Center (NIFC)’s “Wildland Fire Incident Loca-
tions” (NIFC, 2024b). For each fire, we obtain environmental and socio-economic determinants of
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wildfire behavior and fire suppression effort. Environmental variables include topographic (e.g.,
elevation, slope, and aspect), vegetation (e.g., fuel type and fuel loads), and historic fire risk (e.g.,
mean fire return interval) at the ignition point from LANDFIRE, along with weather conditions
(e.g., temperature, precipitation, wind speed, and vapor pressure deficit) at the time of ignition
from PRISM and GridMET.15 We also compute distances between ignition points and high-value
resources that influence fire suppression effort, such as the nearest Census Block in theWUI, USFS
roads, and total housing value within a 10-kilometer radius (Radeloff et al., 2022; USFS, 2023a).

Fuel treatment data come from the USFS Forest Service Activity Tracking System (FACTS)
Hazardous Fuel Treatment Reduction database (USFS, 2024). TheUSFS has systematically recorded
management activities in FACTS since 2005 (Adams and Charnley, 2018). Hence, we restrict our
sample to fuel treatment activity post-2005. Fuel treatment activities typically fall into three main
categories: mechanical and hand (henceforth “mechanical”) removal (e.g., tree removal, masti-
cation of small trees and shrubs, and hand thinning or pruning followed by piling and burning),
prescribed burning (e.g., intentional application of fire), and wildfire use (e.g., unplanned wildfires
left to burn). We restrict our attention to the effectiveness of mechanical and prescribed burning
fuel treatments since they are the types of treatment conducted byUSFS and impacted by the NWFP
reserves.

Spatial data on NWFP LSRs and Matrix areas come from the Regional Ecosystem Office
(REO), which provides the location of these reserves across the Pacific Northwest (REO, 2013).
The REO dataset has the precise location of LSRs. Matrix areas are grouped in the “Other” cate-
gory, overlapping with Riparian Reserves.16 We broaden our definition of Matrix to include other
NWFP designations with similar management protocols, such as “AdaptiveManagement Areas.”17

Throughout the rest of this paper, we refer to Matrix areas as being inclusive of Adaptive Manage-
ment Areas and Riparian Reserves within Matrix areas from the NWFP.

Our sample is inclusive of small fires to capture the impact of fuel treatments on reducing
the costs of initial attack efforts or preventing small fires from becoming large. Because small fire
suppression costs are not systematically recorded, our sample contains many “zero-cost” fires, most
of which are successfully suppressed through initial attack.18 Our analysis is robust to alternative
inclusions and treatments of zero-cost fires, described in Section 4.1.

15LANDFIRE data can be accessed at https://landfire.gov/, PRISM at https://prism.oregonstate.
edu/explorer/, and GridMET from https://www.climatologylab.org/gridmet.html

16To account for the fact that Riparian Reserves have their own set of restrictions and regulations, we control for
whether a fire ignites inside of a Riparian Area (as defined by Existing Vegetation Group Type from LANDFIRE).
Consistent with the additional regulatory restrictions in Riparian Areas, we find that fires igniting in such areas receive
significantly fewer fuel treatments close to their ignition point than fires that ignite in other vegetation types.

17See Section A2 and Table A5 in the Supplemental Appendix for a list and description of all the land-use categories
from the NWFP.

18Approximately 45% of small fires (<100 acres) are zero-cost fires in our sample.
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Since the spatial distribution of private land ownership is correlated with economic and envi-
ronmental determinants of fire suppression efforts and fuel treatments, we restrict our sample to
only those fires that ignite within National Forests. For example, private forest lands are typically
located near communities, along river bottoms, and around valley fringes, while National forests
were created primarily from lands left after land grants and homesteading had privatized lower-
elevation forests (Johnson et al., 2023). To focus on the impact of NWFP reserves, we further
restrict our sample to fires that ignite inside the NWFP boundary. In a less restrictive sample, we
also include fires that ignite within any of the 17 National Forests that are a part of the NWFP. This
sample is less restrictive since some National Forests only lie partly within the NWFP boundary.

As NWFP LSRs and Matrix areas lie outside wilderness areas, we restrict our sample to fires
igniting outside wilderness areas or national parks in all our samples.19 Restricting our sample to
fires that ignite within non-wilderness portions of national forests is essential because fire behavior
and suppression strategies are systematically different in wilderness areas (Gebert et al., 2007).
Lastly, we remove fires igniting in “wet” National Forests that are at little risk of wildfire and
where fuel treatments are not a management priority.20

These filtering steps ensure that our sample focuses on fires igniting within either LSRs or
Matrix areas on USFS land—i.e., areas that are most comparable, as both types of land would have
faced similar protection (or lack thereof) under alternative NWFP plans. In total, our main sample
includes 9,797 fires from 2006-2023 where $4.64 billion USD was spent on fire suppression, the
majority of which occurred during the second half of the sample period (Figure 2b).21 Table 1
provides a summary of our fuel treatment and fire cost data. Consistent with qualitative accounts,
fuel treatment costs are markedly lower than suppression costs, with only $279 million spent on
all fuel treatments in Matrix and LSRs over this period.22 Matrix and LSR areas, collectively,
represent 93% of treated acres and 67% of suppression costs within the NWFP region on USFS
land (see Table A8).

Table 1 also shows major discrepancies between the median and averages in our dataset, which
are consistent with previous literature showing that fire suppression costs and acres burned are a
right-tail-driven process. For example, the average cost of suppressing a fire ($474,354) is orders
of magnitude larger than the median cost of suppressing a fire ($222.5). We see a similar pattern for
acres burned as the average is 546 and the median is 0.1. These results are consistent with the fire

19Parks and wilderness areas were lobbied by the timber industry to be located in high alpine areas and were mostly
located in areas with no development before designation (Johnson et al., 2023).

20We remove 188 fires igniting in “Olympic” or “Suislaw” national forests.
21For reference, the USFS spent $30.5 billion in fire suppression costs over the same time period, with $38.1 billion

across all federal agencies (NIFC, 2024a).
22The $279 million costs should be interpreted as an overestimate of the true cost because the $222 million spent

on mechanical treatments in the FACTS data does not include the revenues from thinning, which often fund other fuel
treatment activities, and in some cases, cover the full cost of other surface fuel treatments (Belavenutti et al., 2021).

19



Table 1: Fuel Treatments & Wildfires Descriptive Statistics

Prescribed Fire Mechanical Total Treatments Wildfires

Average Cost $7,578 $13,423 $14,159 $474,354
Median Cost $1,476.2 $2,069.9 $1,940.3 $222.5
Total Cost $56,654,906 $222,963,295 $279,618,201 $4,647,248,435
Average Acres 56.6 63.1 74.5 546.6
Median Acres 18.3 24 24 0.1
Total Acres 423,221 1,048,673 1,471,894 5,354,781
Total Cost/Acre $133.9 $212.6 $190 $867.9
No. Obs 7,476 16,611 19,748 9,797
Coverage 2006-2023 2006-2023 2006-2023 2006-2023

Note: The first three columns show size and cost statistics for Prescribed Fires, Mechanical, and Total Fuel Treatments (Pre-
scribed Fire + Mechanical) that occur in Matrix and LSR areas in USFS lands in the NWFP area. Cost data for fuel treatments
should be interpreted cautiously because FACTS does not have a systematic way of recording cost data. For example, me-
chanical treatments do not record revenues from sold timber, so some treatments will be recorded with zero cost, while others
will not consider revenues in their cost calculation. The fourth column shows size and cost statistics for wildfires that ignite
in Matrix and LSR areas in USFS lands in the NWFP area.

suppression policies and practices of the Forest Service, where 98% of fires started are successfully
suppressed within a day, while the other 2% account for 95% of fire damages and effects (Calkin
et al., 2005).23

3.2 Baseline Estimation Strategy

Following Baylis and Boomhower (2023), we start with the following fixed-effects specifica-
tion as our baseline regression model:

𝑌𝑖𝑓𝑡 = 𝜙 log(𝐹𝑇𝑖𝑡) + 𝑋′
𝑖𝑡𝛽 + 𝐸′

𝑖𝑡Λ + 𝜇𝑓 + 𝜆𝑡 + 𝜖𝑖𝑓𝑡, (2)

where 𝑌𝑖𝑓𝑡 is the natural log of the cost (or size) of fire 𝑖, that starts in national forest 𝑓 , in month
𝑡. Our parameter of interest is 𝜙, which represents the percentage difference in suppression costs
(or size) associated with a one-percent difference in the acres of fuel treatments occurring within a
certain distance of fire 𝑖, 𝐹𝑇𝑖𝑡.24

We specify 𝐹𝑇𝑖𝑡 as the acres of fuel treatment, both mechanical and prescribed fires, occurring
within a 100-acre circle surrounding the ignition point of the fire within the last ten years of the

23See Figure A2a in the Supplemental Appendix for plots of the distributions of fire size and suppression cost in
our sample.

24We model the relationship between fuel treatments and fire size/cost as a log-log specification to be consistent
with the fire ecology literature that shows the fuel treatment effectiveness is non-linear and exhibits diminishing returns
to scale (Ott et al., 2023). To account for the fact that many fires have zero cost or zero acres of fuel treatment close to
the fire, we take the log(𝑥 + 1) transformation of suppression costs and fuel treatments. We discuss alternative ways
of dealing with fires with zero costs or zero fuel treatments in Section 4.1.
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fire.25 Taking the sum of both mechanical and prescribed fire fuel treatments recognizes that fuel
treatments incorporating both mechanical and prescribed fire treatments are considered best prac-
tice for reducing wildfire severity (Wimberly et al., 2009; Prichard and Kennedy, 2014). Figure 4
provides an example of how we calculate fuel treatments for a particular fire. We calculate the
acres of fuel treatment “close” to a fire instead of the acres of fuel treatment that intersect with a
fire’s footprint because larger fires are more likely to intersect with fuel treatments due to their size,
thus leading to a spurious positive correlation by construction. Additionally, if fuel treatments are
used to construct fire lines where the fire is to be stopped and contained, then a fire is unlikely to
intersect with the proximate fuel treatments.26 Because our treatment variable measures the acres
of fuel treatment close to an ignition point, our results do not capture all the potential benefits of
fuel treatments on wildfire size or suppression costs. For example, fuel treatments that occur fur-
ther away from an ignition point may still influence the cost and size of large fires that encounter
fuel treatments further away from their ignition point.27

We include sets of socio-economic and environmental control variables, 𝑋𝑖𝑡 and 𝐸𝑖𝑡, that in-
fluence a fire’s size and its cost of suppression (Table A7). Environmental variables include to-
pographic (e.g., slope, elevation, or aspect at ignition point), weather (e.g., temperature or vapor
pressure deficit), vegetation (e.g., fuel type), and historic fire risk (e.g., mean fire return interval)
characteristics near the ignition point.28 Socio-economic variables include the distance of a fire’s
ignition to the nearest WUI or Forest Service road. To account for the role of previous wildfires
in influencing wildfire behavior, we calculate the previous acres burned within the 100-acre circle
surrounding an ignition point in the last 10 years.29

National forest fixed effects, 𝜇𝑓 , control for time-invariant unobserved determinants of fire-
fighting costs that are specific to a national forest. Year-month fixed effects, 𝜆𝑡, control for unob-

25We choose ten years to be the cutoff for counting fuel treatments as previous studies have shown that fuel treatment
effectiveness is diminished after 9–14 years (Collins et al., 2009; Lydersen et al., 2014). We explore the sensitivity of
our estimates to different distances and time-since-fire in Section 4.1. Because mechanical fuel treatments are often
conducted in a series of treatments that are followed up by a prescribed burn (e.g., a commercial thin is typically
conducted in tandem with other mechanical treatments such as biomass removal or fuel piling), we avoid double
counting such fuel treatments by only counting mechanical treatments associated with a given project area once.

26Perimeters of fires are only systematically recorded for large fires (> 1000 acres), and hence any analysis using
intersected areas would require restricting the sample to only large fires.

27We demonstrate this point in Section A4 of the Supplemental Appendix by decomposing the total marginal benefit
of fuel treatments on fire size and suppression cost across multiple channels.

28We do not control for vegetation characteristics that are influenced by fuel treatments in our sample, such as
canopy base height, as this would condition on one of the mechanisms through which fuel treatments influence our
outcomes of interest. Instead, we calculate all vegetation characteristics, like canopy base height, based on their 2001
levels so that they represent pre-treatment vegetation characteristics. See Table A7 in the Supplemental Appendix for
more details on such variables.

29Note that previous burned acres is sometimes considered another form of fuel treatment and have been shown to
reduce wildfire severity (Belval et al., 2019). For fires that do not threaten structures and assets at risk, the USFS lets
such fires burn as “Wildfire Use” (WFU).
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served changes in firefighting resources, conditions, and costs over time that are constant across
national forests. We cluster standard errors at the national forest level.

Figure 4: Example Construction of 𝐹𝑇𝑖𝑡 for Flagg Mountain Fire - 2020

100−Acre Circle

Fuel Treatments

Notes: The above map visually demonstrates how 𝐹𝑇𝑖𝑡 is calculated for a particular fire, the Flagg Mountain Fire, a 0.1 acre fire
that occurred close to Mazama, WA, in 2020. The red star shows the ignition point location, the red circle is the area from which
fuel treatments are to be calculated (in this case, 100 acres surrounding the ignition point), and the blue shows the location of fuel
treatments close to the fire. Multiple treatments occur within the same blue polygon: a mechanical thin in 2015, a machine pile in
2016, and a pile burn in 2019. The intersected area of the fuel treatments and red circle is 10 acres. Since our fuel treatment variable
is defined to be the acres of mechanical treatments (no double counting) plus prescribed fire acres, 𝐹𝑇𝑖𝑡 is equal to 20 acres.

The identifying assumption in our baseline regression analysis is that unobserved determinants
of fire cost and size, 𝜖𝑖𝑓𝑡, are independent of 𝐹𝑇𝑖𝑡, conditional on national-forest fixed effects and
our other controls. Because both fuel treatments and fire suppression effort are jointly determined
via socio-economic and environmental factors, we may expect estimates of 𝜙 to still suffer from
bias even after the inclusion of our controls because of measurement error and unobserved factors
that vary within a national forest, like fire risk. For example, while we control for a fire’s proximity
to WUI and historic fire risk factors, we do not observe the precise locations of homes or ex-ante
wildfire risk at the time a fire ignites or a fuel treatment is conducted.30 Since we would expect
both home proximity and ex-ante fire risk to be positively correlated with fire suppression effort
and fuel treatments, our baseline estimate of fuel treatments’ effect on suppression costs is likely
to suffer from an upward bias—i.e., the expected negative effect of fuel treatments on suppression

30Measures of wildfire risk, such as wildfire hazard potential (Dillon andGilbertson-Day, 2020), measure risk based
on conditions in 2014 or later. As a result, this variable is a function of both our dependent and main independent
variables for many of the fires in our sample; hence, it would be improper to control for it. Instead, we control for
historic fire risk factors since they are not influenced by wildfires or fuel treatments in our sample.
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costs will be understated.
A regression of log(𝐹𝑇𝑖𝑡) on the observable characteristics of fire suppression effort, 𝑋𝑖𝑡, and

environmental factors that influence wildfire behavior, 𝐸𝑖𝑡, confirms that fuel treatments highly
correlate with such factors (Table 2). Specifically, fires that ignite closer to fuel treatments are, on
average, closer in proximity to the WUI, housing units, and wealthier neighborhoods. Consistent
with our hypothesis that fuel treatments are located in areas of higher fire risk, we find that fuel
treatments occur in areas that historically experienced more frequent fire and that are typically drier
and warmer in the summer.

Table 2: Balance Test Regressions - Endogenous Regressor v. Instrument

Economic Variables
Dist WUI Dist FS Road Total Housing

Value
Population No. Housing

Units

log(𝐹𝑇𝑖𝑡) -0.531*** -0.070*** 43.351** 164.677** 94.791***
(0.084) (0.013) (17.929) (61.759) (29.990)

𝐿𝑆𝑅𝑖𝑡 0.890* 0.108 -9.819 -83.635 -34.170
(0.460) (0.063) (20.522) (122.272) (65.423)

N 9923

Topography &Weather
Slope Elevation South Slope Wind Speed ERC

log(𝐹𝑇𝑖𝑡) -0.888*** -39.930*** 0.003 0.016 0.188
(0.181) (7.615) (0.006) (0.011) (0.141)

𝐿𝑆𝑅𝑖𝑡 2.673*** 41.181 0.015 -0.032 -0.548
(0.347) (49.107) (0.010) (0.033) (0.439)

N 9923

Historic Fire Risk Variables
MFRI Precip - CN Temp Mean -

CN
Temp Max - CN VPD - CN

log(𝐹𝑇𝑖𝑡) -0.343* -0.462*** 0.159*** 0.266*** 0.521***
(0.163) (0.132) (0.025) (0.028) (0.058)

𝐿𝑆𝑅𝑖𝑡 -0.138 0.529 -0.219 -0.484 -1.375**
(0.837) (0.500) (0.229) (0.290) (0.582)

N 9923
* p < 0.1, ** p < 0.05, *** p < 0.01
Notes: The table reports the results of 30 separate regressions of the natural log of fuel treatment acres, log(𝐹𝑇𝑖𝑡), and an indicator of whether
a fire occurs in a late-successional reserve, 𝐿𝑆𝑅𝑖, on sets of economic and environmental (topography, weather, & historic fire risk) variables
with the inclusion of National Forest and year-month of sample fixed effects. The sample includes wildfires igniting inside Matrix and LSR lands
within 15 National Forests apart of NWFP from 2006–2023. Economic variables are distance to WUI & USFS road and the total housing value,
population, and housing units within 10km of the ignition point. Topographic variables are the slope and elevation at a fire’s ignition point, and
a dummy variable equal to one if the slope at the ignition point is on a south-facing slope aspect. Weather variables include the wind speed and
energy release component (ERC) on the day of ignition. Historic fire risk control variables include mean fire return interval (MFRI) and the 30-year
climate normals in August for precipitation, temperature mean, temperature max, and max vapor pressure deficit (VPD) at the ignition point for a
given fire. Standard errors are clustered at the national forest level.
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3.3 Instrumental Variables Strategy

To address endogeneity concerns, we use spatial variation in late-successional reserves (LSRs)
established under the NWFP within National Forests as an instrument for the extent of fuel treat-
ment activity near a fire. The intuition behind this strategy is to compare fires igniting within the
same National Forest during the same time of year but under different land designations—those
igniting within LSRs (protected) versus those in Matrix (unprotected) areas (Figure 3b).

As we discuss in Section 1, LSRs have inadvertently restricted fuel treatment activities due
to the conservation-focused management constraints they impose. Consequently, we hypothesize
that fires igniting within LSRs are surrounded by less extensive fuel treatments near their ignition
points compared to those in Matrix lands. This variation in fuel treatments can be considered
exogenous due to the idiosyncratic processes involved in delineating LSR and Matrix areas. While
LSR boundaries were primarily motivated by ecological criteria, such as the nesting, foraging, and
dispersal needs of the NSO, substantial portions of NSO critical habitat were left unprotected in
Matrix lands due to the compromise between timber production and species conservation in the
creation of the NWFP (Gaines et al., 2010; Johnson et al., 2023). Indeed, most fires in our sample
occur in dry forests, where scientists have noted the arbitrary ecological distinctions between LSRs
andMatrix areas (Spies et al., 2019). For this reason, LSR designations are unlikely to correlate with
unobserved factors influencing wildfire behavior, reinforcing the plausibility of our instrument.

More formally, our instrument is a binary variable equal to one if a fire ignites inside an LSR and
zero otherwise.31 Denoting our instrument as𝐿𝑆𝑅𝑖, the first-stage equation relating fuel treatments
and fires igniting in an LSR is:

log(𝐹𝑇𝑖𝑡) = 𝛿𝐿𝑆𝑅𝑖 + 𝑋′
𝑖𝑓𝑡Π + 𝐸′

𝑖𝑓𝑡Ψ + 𝜇𝑓 + 𝜆𝑡 + 𝑢𝑖𝑓𝑡, (3)

and the reduced-form equation relating fire suppression costs and LSR status is

𝑌𝑖𝑓𝑡 = 𝜂𝐿𝑆𝑅𝑖 + 𝑋′
𝑖𝑓𝑡Γ + 𝐸′

𝑖𝑓𝑡Ω + 𝜇𝑓 + 𝜆𝑡 + 𝑣𝑖𝑓𝑡. (4)

The ratio of the reduced-form and first-stage coefficients, 𝜂/𝛿, is equivalent to the IV estimand of
the percentage difference in fire suppression costs (or size) from a one-percent difference in fuel
treatments within a certain distance of a fire’s ignition.

The identifying assumptions underlying our IV approach are i) relevance: 𝐿𝑆𝑅𝑖 has a strong
correlation with fuel treatments; ii) exogeneity: 𝐿𝑆𝑅𝑖 is (conditionally) uncorrelated with the un-
observable determinants of fire size and suppression costs; iii) exclusion: LSR status has (con-

31In alternative specifications, we define the instrument as the number of acres of land within an LSR surrounding
the ignition point of a fire to account for the fact that a fire may occur close to the border of Matrix-LSR.
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ditionally) no direct impact on fire size and suppression costs; and iv) monotonicity: LSR status
should only reduce a fire’s exposure to fuel treatments within LSRs or have no effect.

Our instrument would violate the first assumption if LSR status did not substantially hinder the
Forest Service’s ability to conduct fuel treatments. We test this assumption directly by estimating
equation (3). We also examine the plausibility of the exogeneity assumption by regressing𝐿𝑆𝑅𝑖 on
the observable determinants of fire size and suppression costs with the inclusion of National Forest
and year-month fixed effects. We find 𝐿𝑆𝑅 is generally balanced across observable characteristics
and is a considerable improvement over log(𝐹𝑇𝑖𝑡) (Table 2). The exclusion restriction would
fail if fire suppression efforts were directly responsive to characteristics associated with LSRs—
e.g., a concern for saving old-growth forests and NSO habitat. Although we cannot directly test
this assumption, this is not likely to be the case because the Forest Service’s top priorities in fire
suppression are human life, then structures, and lastly natural resources (USFS, 2000).32 Similarly,
the monotonicity assumption would fail if the USFS conducted more fuel treatments in certain
areas within LSRs in order to protect the NSO. We do not believe this to be the case because the
stated goals of fuel treatments are to protect human assets at risk (USFS, 2022) and minimize the
potential harm that fuel treatments may have on the NSO habitat (USFWS, 2008).

We can interpret our IV estimate of the impact of fuel treatments on fire size and suppression
costs as a local average treatment effect (LATE), which represents the treatment effect for a specific
subgroup of compliers (Imbens and Angrist, 1994). In our case, compliers are fires that would
have experienced more fuel treatments close to their ignition point if not for the LSR designation.
This contrasts with the average treatment effect on the treated (ATT), which is a weighted average
of the treatment effects for compliers and always-takers, the latter representing fires that would
have received the same level of fuel treatments close to their ignition point regardless of LSR or
Matrix designation. Under a generalized Roy model with positive selection on expected gains
(Heckman, 2010), we expect the treatment effect for always-takers to be larger (in magnitude)
than for compliers. That is, always-takers occur in areas that were perceived to have large enough
benefits from fuel treatments to overcome any implementation challenges associated with an LSR
designation. Thus, we posit that our estimate of LATE is an underestimate, in magnitude, of the
ATT.

32Correspondingly, Plantinga et al. (2022) find no evidence of increased fire suppression effort in ESA or sensitive
watershed habitats.
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Table 3: IV First Stage & Reduced Form Regression Results

First Stage Reduced Form IV OLS

log(𝐹𝑇𝑖𝑡) Size Cost Size Cost Size Cost

𝐿𝑆𝑅𝑖𝑡 -0.139*** 0.107* 0.179***
(0.021) (0.057) (0.044)

log(𝐹𝑇𝑖𝑡) -0.770* -1.287*** -0.036* -0.007
(0.439) (0.393) (0.019) (0.029)

1st Stage F-Stat 45.3
𝑅2 0.19 0.19 0.69 0.07 0.60 0.19 0.69
N 9797 9797 9797 9797 9797 9797 9797
* p < 0.1, ** p < 0.05, *** p < 0.01
Notes: The table reports the results of seven separate regressions for the first stage, reduced form, full IV estimates, and OLS estimates using an
indicator for whether a fire occurs within a late-successional reserve, 𝐿𝑆𝑅𝑖, as an instrument for the natural log of fuel treatments log(𝐹𝑇𝑖𝑡). The
sample includes wildfires inside of Matrix and LSR areas in the NWFP area from 2006–2023. The first column reports the coefficient estimates for
the first stage, log(𝐹𝑇𝑖𝑡), while the second and third columns are the reduced form results for the natural log of fire size and suppression costs. The
fourth and fifth columns are the full IV regression results on the natural log of wildfire size and suppression cost. The sixth and seventh columns are
the baseline OLS estimates of the natural log of wildfire size and suppression cost. Each regression includes economic and environmental control
variables. Economic controls include a cubic function of distance to WUI Census Block and USFS road, along with the total population, housing
units, and housing value within 10km of the ignition point. Environmental controls include vegetation characteristics (previous acres burned in the
last ten years within the 100-acre ignition circle, an indicator if in a Riparian area, fuel model type, canopy height, canopy bulk density, and canopy
base height), topographic characteristics (slope, elevation, aspect class, and topographic ruggedness (TRI) at the ignition point), weather controls
(mean and max temperature, wind speed, precipitation, energy release component (ERC), and vapor pressure deficit (VPD) on day of ignition),
and historic fire risk controls (mean fire return interval (MFRI) and the 30-year climate normals in August for precipitation, temperature mean,
temperature max, and max vapor pressure deficit (VPD)). National Forest fixed effects include the 15 national forests apart of the NWFP. Standard
errors are clustered at the national forest level. First stage Kleibergen-Paap F-statistic are calculated via cluster robust-standard errors from the Fixest
package in R (Laurent, 2018).

4 The Effect of Fuel Treatments on Fire Size and Suppression
Costs

Table 3 presents the first-stage (3), reduced-form (4), IV, and baseline (2) regression results for
both the natural log of fire suppression costs and size. The IV regression uses an indicator variable
equal to one if a fire ignites inside of an LSR,𝐿𝑆𝑅𝑖, as an instrument for log(𝐹𝑇𝑖𝑡). The estimated
first-stage relationship implies that fires igniting inside of LSRs receive 13.9% fewer acres of fuel
treatments within a 100-acre radius of their ignition point than fires igniting inside of Matrix areas,
on average. This first-stage relationship is statistically different from zero, with a Kleibergen-Paap
F-statistic equal to 45.3, calculated with clustering adjustments, suggesting that LSR status is a
strong instrument for fuel treatments. The estimated reduced-form relationships demonstrate that
fires igniting inside of LSRs are 10.7% larger (p-value of 0.0770) and 17.9% more expensive (p-
value of 0.0010), on average. Taken together, these estimates imply that a one-percent increase in
fuel treatments within a 100-acre radius of a fire’s ignition reduces fire suppression costs by 1.287
percent (p-value of 0.0051) and fire size by 0.770 percent (p-value of 0.0999), on average. These
IV estimates are considerably larger in magnitude than their corresponding baseline fixed-effects
OLS estimates, as expected.
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The IV estimate on cost implies that fuel treatments and fire suppression effort are q-substitutes—
that is, fire managers allocate less suppression effort toward fires that are in close proximity to fuel
treatments. This is consistent with qualitative evidence suggesting that fuel treatments enhance
the ability of hand crews to conduct direct and indirect attacks, thereby reducing reliance on more
costly aerial attack methods (Romero and Menakis, 2013). While this has the effect of decreasing
the suppression costs of such fires, it also offsets any direct reductions that fuel treatments have on
fire size. Thus, fuel treatments are not guaranteed to reduce a fire’s size in such situations, although
we find weak evidence that they do in our context.

Following from our conceptual model, a negative direct effect of fuel treatments on fire size is
a sufficient condition for the economic benefits of fuel treatments. While the direct effect cannot
be empirically identified, we test for its existence indirectly by testing the null hypothesis that
the effects of fuel treatments on fire size or cost are weakly positive. We find strong evidence to
reject the null hypothesis (p-value of 0.0001) using an intersection-union hypothesis test (Casella
and Berger, 2002).33 This result supports the conclusion that fuel treatments are economically
beneficial in our context.

Our conceptual model also highlighted the challenges of interpreting our results if resources
for fire suppression are scarce. Under a binding resource constraint, effort may be disproportion-
ately allocated away from fires with fuel treatments to those with no fuel treatments if effort and
fuel treatments are q-substitutes. Such spillovers have two implications. First, they would violate
SUTVA, resulting in an overestimation (underestimation) of the magnitude of fuel treatments’ ef-
fect on fire suppression costs (fire size). Second, they would imply that reductions in suppression
costs from fuel treatments are not guaranteed to be an accurate assessment of the economic benefits
of fuel treatments (Corollary 3.1).

To explore the possibility of potential spillovers and a binding resource constraint, we re-
estimate our IV regression with additional controls. First, we control for the number of concur-
rent fires that are within close proximity to fuel treatments (𝐹𝑇𝑖𝑡 > 0) to account for potential
spillovers. Implicitly, we are assuming that fires are exchangeable and linear in their spillover ef-
fects on other fires so that a fire’s potential size and cost only depend on the number of other treated
fires (Vazquez-Bare, 2023). Under q-substitutability, we expect the effect of this control to be pos-
itive for suppression costs and negative for fire size, as suppression resources shift toward other
fires. Second, we account for resource scarcity at the state level, following Gebert et al. (2007).
Specifically, we calculate the difference between the weekly average number of fires in a state
(2000–2020) and the observed number of fires during the week of a fire’s ignition. This measure
captures deviations from typical suppression resource availability.34

33See Section A5 in the Supplemental Appendix for more details on how we conduct this hypothesis test.
34Because our sample lacks information on fire containment dates, we supplement it with a wildfire ignition dataset
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The IV estimates for fire size (-0.510, p-value of 0.253) and suppression costs (-1.099, p-value
of 0.007) do not change meaningfully with the inclusion of these controls (Table A9), although the
effect on fire size is no longer statistically significant at conventional levels. We find no significant
evidence that spillovers from other treated fires affect suppression costs or fire size (0.001, p-value
of 0.95), suggesting spillovers are not a meaningful factor. However, the positive and significant
effect of the number of concurrent fires (0.001, p-value of 0.0213) indicates that resource scarcity
may influence fire suppression outcomes. The magnitude of this effect is small—each additional
concurrent fire (above average) increases fire size and suppression costs by 0.1%. This finding
could also reflect variation in general fire conditions within a state that is not fully captured by
our fixed effects or other controls. Overall, there is limited evidence that resource constraints
meaningfully affect suppression effort allocation. Consequently, the reduction in suppression costs
due to fuel treatments remains a valid partial measure of their economic benefits, which we quantify
below.

4.1 Robustness Checks

We conduct a variety of robustness checks to evaluate the sensitivity of our results to alterna-
tive variable definitions, specifications, and samples. To address concerns that Matrix and LSR
areas may be systematically different, even after controlling for observable determinants of fire
suppression efforts, we implement a matching procedure to improve comparability between fires
igniting in Matrix and LSR areas. This approach relaxes the parametric assumptions of our regres-
sion framework and avoids extrapolation when covariate overlap is limited. Each fire igniting in
an LSR is matched exactly to a Matrix fire that occurs in the same National Forest, fuel type, and
month. Fires are then inexactly matched using a genetic search algorithm to optimize covariate bal-
ance across the primary determinants of fire suppression costs and size, including distance to WUI
and USFS roads, elevation, slope, vapor pressure deficit, and wind speed. This procedure results in
3,225 matches and 6,450 fires in total. The matched IV estimation yields estimated elasticities for
suppression costs and fire size that closely align in magnitude and statistical significance with our
baseline results (Table A10). While the matching procedure provides the strongest internal validity
for our estimates, we prefer the estimates resulting from our IV regression specification because
its estimation sample more closely represents the landscape encompassed by the NWFP and is,
therefore, more externally valid for our counterfactual cost-benefit estimates in Section 4.2.

Another concern with our approach is that our estimates may be sensitive to changes in the
specified distance for which we calculate fuel treatments close to an ignition point. To explore this,
we re-estimate the IV regression for suppression costs using treatment circles of varying sizes: 50,

from the USFS that includes containment information (Short, 2023). This dataset, however, covers fires only up to
2020, reducing the sample size to 8,297 fires from our main sample of 9,797 fires.
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75, 100, 125, and 150 acres. We find that the magnitude of the IV estimate is larger for smaller
treatment circles but less precisely estimated as there are fewer treated fires (Figure A3). Increasing
the treatment circle improves precision but attenuates the estimate towards zero, as fuel treatments
that are further away from a fire’s ignition point are less likely to influence fire size and suppression
costs. Nevertheless, our IV estimates for suppression costs are statistically significant at the 1%
level across all specifications.

We also explore the sensitivity of our IV estimates to four alternative estimation samples: i)
lightning fires only, ii) all fires occurring in a national forest that intersects with the NWFP, iii) fires
that are within 2km of a Matrix-LSR border, and iv) fires that are not associated with a complex
(Table A11).35 The lightning-only sample addresses concerns that human ignition probabilities may
correlate with a fire’s LSR or Matrix designation. Including fires that occur in any part of a national
forest in the NWFP explores how the results generalize across a larger area of interest.36 Restricting
the sample to fires that occur close to Matrix-LSR boundaries addresses concerns that Matrix and
LSR areas are systematically different by focusing on areas in which they are most likely to be
similar. Limiting the sample to non-complex fires addresses concerns about potential inaccuracies
in size and cost reporting for fires within complexes. Overall, the estimated cost elasticity remains
robust across samples, while the size elasticity shows less consistency.

Next, we explore how our IV estimates change when using different specifications of our en-
dogenous regressor and instrument: i) a linear specification of 𝐹𝑇𝑖𝑡, ii) taking the inverse hyper-
bolic sine transformation of 𝐹𝑇𝑖𝑡, iii) calculating fuel treatments that occur within the last five
years (instead of 10), and iv) using a continuous measure of LSR as an instrument for log(𝐹𝑇𝑖𝑡)
(Table A13).37 Across all specifications, the IV estimates for suppression costs are statistically
significant at the 1% level, while the significance of fire size is relatively sensitive across specifi-
cations.

We also examine the robustness of our IV estimates to three alternative dependent variable
specifications: i) excluding zero-cost fires, ii) imputing the cost of zero-cost fires by the median
cost of suppressing a small fire, and iii) indicators for above-median fire size or cost (Table A13).
The first two approaches address concerns with our choice of including small zero-cost fires in our
sample by specifying our dependent variable as the natural log of one plus cost. When estimating
i), the signs and magnitudes of our estimates are unchanged, with statistically significant results

35A complex fire is one in which multiple ignitions merge into a single fire. Costs for such fires are recorded
separately for each ignition point, allowing for multiple fires in our sample associated with a single complex. We are
only able to identify a fire complex for the years 2015-2023.

36Note that some National Forests lie only partly within the NWFP boundary. Following our original filtering
steps, we remove fires occurring in wilderness areas or the two “wet” national forests—Olympic and Suislaw National
Forests.

37This continuous measure is analogous to 𝐹𝑇𝑖𝑡: it is the number of LSR-designated acres inside a 100-acre circle
around a fire’s ignition point.
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for both the first stage and reduced form for cost. However, the IV cost estimate loses statistical
significance at the 5% level, likely due to reduced sample size, lower statistical power, and the fact
that we are now focusing on larger fires. For imputation (ii), small zero-cost fires (<100 acres)
are assigned the median cost of small non-zero-cost fires, assuming they represent low-cost initial
attacks. Large zero-cost fires (>100 acres) are excluded due to potential misreporting of cost.38

Imputed results show no change in signs or magnitudes. For above-median indicators (iii), we find
that fuel treatments significantly reduce the probability of a fire exceeding the median cost, with
no significant effect on fire size.

Finally, we test the robustness of our IV estimates to alternative fixed-effect specifications: i)
replacing national forest for ranger district fixed effects, ii) replacing year-month fixed effects for
year and month (of year) fixed effects, iii) replacing year-month fixed effects for state-year and
state-month (of year) fixed effects, and iv) replacing year-month fixed effects for state-year-month
fixed effects (Table A14). Ranger districts are smaller units than National Forests and are more
directly involved in land management implementation, and thus, such fixed effects can capture
time-invariant unobserved heterogeneity that occurs within the ranger district level. Including time-
by-state fixed effects addresses concerns that different states within the NWFP may be following
different trends in fire sizes or suppression costs over time. In general, we find that our estimates
do not meaningfully change with the inclusion of these various fixed effects.

4.2 Counterfactual Costs & Benefits of Fuel Treatments

To quantify the economic benefits of fuel treatments, we estimate the counterfactual benefits
that would have arisen from a landscape-wide expansion of fuel treatments during our sample pe-
riod relative to the associated costs of expanding fuel treatments. Our empirical strategy does not
focus on quantifying damages from wildfires, such as smoke and property loss. Therefore, our
main measure of economic benefits is the reduction in fire suppression costs. This approach con-
trasts with our test of the direct effect of fuel treatments on fire size, which assesses whether any
economic benefits stem from fuel treatments in general.

Suppose that all fuel treatments during our sample period increased proportionately by one per-
cent. We assume this leads to a corresponding one-percent increase in fuel treatment costs, equal to
$2.79 million (Table 1).39 Given a proportionate one-percent increase in fuel treatments, we then
calculate the percent increase in 100-acre fuel treatment intersections for each fire (see Figure A4
for a demonstration). For each fire, we calculate the counterfactual suppression cost savings by

38Fifty-one fires meet this criterion.
39Note that although we are counting the labor costs of fuel treatments as part of our cost measure, many initatives

have cited job creation in rural communities as another benefit to increasing the pace and scale of fuel treatments (State
of California, 2021). This is especially prescient in the Northwest where 30,000 timber jobs were lost from the NWFP
(Ferris and Frank, 2021).
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multiplying the percent increase in fuel treatment intersections by our estimated elasticity of fire
suppression costs (-1.287; Table 3) and by the cost of suppressing the fire. Summing the counter-
factual savings across all of the fires in our sample provides an estimate of the total benefits from
fuel treatments. We find that a one-percent uniform expansion of fuel treatments across the land-
scape would have resulted in suppression-cost savings of around $10.7 million and 5,896 fewer
acres burned, corresponding to a benefit-cost ratio of 3.84.

We further explore whether fuel treatments yield increasing, constant, or decreasing economic
returns to scale by increasing fuel treatments proportionately by five and ten percent. Our analysis
reveals that the cost-benefit ratio increases to 6.50 and 7.02, respectively, suggesting increasing
returns to scale at current levels of fuel treatment activity. We hypothesize that as fuel treatments
increase in size, the frequency of intersections with fire areas also rises, thereby enhancing the
likelihood of influencing fire behavior across the landscape.

Our finding that fuel treatments yield increasing economic returns to scale indicates that current
treatment levels fall short of the social optimum. This strengthens the case for recent efforts by fed-
eral and state agencies to expand both the scope and intensity of fuel treatment programs on public
lands. For example, California and the U.S. Forest Service have set ambitious targets, committing
to treat one million acres annually by 2025—a significant shift from the status quo (USFS and
State of California, 2020). Our results suggest that such initiatives are likely to generate substantial
economic benefits.

While our estimated benefit-cost ratio highlights the potential benefits of fuel treatments, there
are several reasons why it is likely a considerable underestimate of the true economic benefits of
fuel treatments. First, our only measure of benefits from fuel treatments is the reduction of fire
suppression costs, which account for less than 1% of the total estimated annual economic cost of
wildfires (JEC, 2023). Second, the relevant parameter for our counterfactual analysis is the ATT,
which tells us the average change in suppression costs that would be experienced by fires inter-
secting with more fuel treatments relative to a regime where there were fewer fuel treatments.40

However, our IV strategy identifies the LATE for compliers, which we argue is likely an underes-
timate (in magnitude) of the ATT (Section 3.3). Third, our fuel treatment cost data do not include
revenues from mechanical removal fuel treatments.41 Finally, fuel treatments likely reduce sup-
pression costs through other channels (i.e., treatments further away from an ignition point may also

40The ATT is valid in our counterfactual analysis under the assumption that adjacent untreated areas where fuel
treatments expand share similar unobservable characteristics of the treated areas.

41Note that we do not model other potential costs from prescribed burns, such as smoke emissions, as this would
require analyzing trade-offs in smoke emissions with and without fuel treatments. However, prescribed burns are
typically localized and planned to allow communities to prepare for protective measures. Therefore, we believe the
benefits of smoke exposure from fuel treatments outweigh their costs. In fact, simulation studies indicate that increasing
prescribed burns in the Pacific Northwest and Northern California would significantly reduce population exposure to
particulate matter (Kelp et al., 2023).
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influence the cost and behavior of large wildfires).42 Thus, a proper accounting of the benefits
provided by fuel treatments would likely result in a benefit-cost ratio that is considerably higher
than the conservative estimate we provide here.

Table 4: Counterfactual Benefits of Increasing Fuel Treatments

Cost of
Treatment

Suppression
Savings

Benefit-Cost
Ratio

Reduction
Acres Burned

1% Increase $2,796,182 $10,745,940 $3.84 5,896
5% Increase $13,980,910 $90,878,301 $6.5 50,602
10% Increase $27,961,820 $196,272,719 $7.02 108,603

Notes: The table above presents the cost, benefits, and benefit-cost ratio under different counterfactual scenarios of increasing fuel
treatment activity. In the first row, fuel treatments are increased proportionately by one percent, assuming that costs increase accord-
ingly by one percent of the total cost of conducting fuel treatment from 2006-2023. In rows two and three, fuel treatments and costs
are increased by five and ten percent.

5 Discussion

A century of wildfire suppression policies has left much of the western U.S. in ecological dis-
equilibrium, with accumulated fuel loads driving larger, more severe, and costlier wildfires. To
address this crisis, expanding the pace and scale of fuel-reduction treatments has been proposed
as a key strategy. Despite commitments like the U.S. Forest Service’s plan to treat 50 million
acres of vulnerable landscapes over the next decade (USFS, 2022), empirical evidence on the cost-
effectiveness of fuel treatments has remained sparse. Our study bridges this gap by quantifying the
economic benefits of fuel treatments in reducing fire suppression costs and fire sizes, two primary
drivers of wildfire costs.

To test whether fuel treatments reduce fire suppression costs and fire sizes, we employ an instru-
mental variable research design that leverages exogenous variation in the location of fuel treatments
arising from spatial variation in late-successional reserves (LSR) from the Northwest Forest Plan
(NWFP). We find that fires starting in LSRs receive significantly fewer fuel treatments close to
their ignition point and are more costly to suppress, on average, suggesting that fuel treatments
significantly reduce the cost of wildfires. This result suggests that fuel treatments and fire sup-
pression efforts act as q-substitutes: suppression efforts shift away from fires igniting close to fuel
treatments, reducing suppression costs but attenuating the treatments’ effectiveness in limiting fire
size. Further, q-substitutability implies suppression effort can be reallocated to fight other wild-

42If fuel treatments do indeed influence the behavior and costs of larger fires, this has implications for many fires
outside of our sample. For example, some of the most costly fires start on private lands but spill over onto public
lands (Levine et al., 2022). It is likely that fuel treatments will also reduce the costs of fighting such fires, which our
counterfactual analysis does not account for.
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fires, although we find little empirical support that fuel treatments have spillover effects on other
fires.

To interpret our findings in an economic framework, we develop a stylized model and test a suf-
ficient condition for the presence of overall economic benefits, considering both wildfire damages
and suppression costs. Applying a bootstrap intersection-union hypothesis test to our sufficient con-
dition, we find evidence that fuel treatments jointly reduce fire size and suppression costs, thereby
providing overall economic gains. We then explore and quantify a lower bound of such economic
benefits through counterfactual fire suppression cost savings with proportionate increases in the
size of fuel treatments in our sample. Our conservative back-of-the-envelope estimates suggest
that for every dollar spent on fuel treatments, four to seven are saved in fire suppression costs,
depending on the level of increased treatment activity.

Our results indicate that fuel treatments are a cost-effective means of addressing wildfire costs,
despite identifying only one dimension through which fuel treatments can influence fire size and
suppression costs. In particular, we do not identify the potential role that fuel treatments play
in influencing fire ignitions, nor do we account for the impact that fuel treatments may have in
mitigating the spread of large fires located further away from a fire’s ignition point (Section A4).
Further, our results do not capture how fuel treatments’ impact on fire size and severity influences
other significant contributors to the costs of wildfires, such as health effects, property damage,
and labor market impacts (Bayham et al., 2022; Borgschulte et al., 2022; Heft-Neal et al., 2023).
Thus, our estimates of the economic benefits of fuel treatments are likely conservative and could
be significantly larger once all potential sources are accounted for.

Our study underscores the need to align conservation and wildfire management policies with
climate adaptation goals. We find that well-intentioned policies, such as the establishment of LSRs
under the NWFP to protect endangered species, have unintentionally increased wildfire risks by
limiting fuel treatments. Similar challenges arise from other environmental regulations such as
the Clean Air Act, Wilderness Area restrictions, and NEPA, which collectively constrain proactive
forest management on public lands (North et al., 2012, 2015). Reforms to these policies could help
reduce wildfire risks, protect vulnerable ecosystems, and lower public expenditures on wildfire
suppression. Furthermore, our findings suggest that scaling up fuel treatments could serve as a
critical component of climate resilience strategies, complementing efforts to mitigate greenhouse
gas emissions and adapt to intensifying wildfire regimes.

In sum, our results provide strong evidence that fuel treatments are a cost-effective tool for
mitigating wildfire costs, even when accounting for only a subset of their potential benefits. By re-
ducing suppression costs and potentially alleviating wildfire damages, fuel treatments offer a path-
way to address one of the most pressing challenges facing public land management in the western
United States. However, realizing the full economic and ecological benefits of fuel treatments will
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require thoughtful integration of wildfire management policies with broader environmental and
climate adaptation goals. We suggest the public take a closer look at how such policies have unin-
tentionally prevented the management of forests on public lands and explore appropriate reforms
that encourage proactive management.
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Appendix 1 Theoretical Results: A Two-Fire Example
In this section, we provide the derivations for themain results of our conceptual model presented

in section 2. For clarity, we present the results for a system consisting of two fires; however, our
results are easily generalized to a system with more fires (at the cost of additional notation).

Consider the system of equations associated with the first-order conditions for a two-fire prob-
lem:

𝐺1(𝐸1, 𝜆, 𝐹1) = −𝐿(𝑋1)𝜕𝑆(𝐸1, 𝐹1)
𝜕𝐸1

− 𝜕𝐶(𝐸1)
𝜕𝐸1

− 𝜆 = 0

𝐺2(𝐸2, 𝜆, 𝐹2) = −𝐿(𝑋2)𝜕𝑆(𝐸2, 𝐹2)
𝜕𝐸2

− 𝜕𝐶(𝐸2)
𝜕𝐸2

− 𝜆 = 0

𝐺3(𝐸1, 𝐸2) = 𝐸1 + 𝐸2 − ̄𝐸 = 0,

where we’ve assumed that the resource constraint is binding—i.e., 𝜆 > 0. Linearizing this system,
we have:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝐺1
𝜕𝐸1

𝜕𝐺1
𝜕𝐸2

𝜕𝐺1
𝜕𝜆

𝜕𝐺2
𝜕𝐸1

𝜕𝐺2
𝜕𝐸2

𝜕𝐺2
𝜕𝜆

𝜕𝐺3
𝜕𝐸1

𝜕𝐺3
𝜕𝐸2

𝜕𝐺3
𝜕𝜆

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑑𝐸1

𝑑𝐸2

𝑑𝜆

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝐺1
𝜕𝐹1

𝜕𝐺1
𝜕𝐹2

𝜕𝐺2
𝜕𝐹1

𝜕𝐺2
𝜕𝐹2

𝜕𝐺3
𝜕𝐹1

𝜕𝐺3
𝜕𝐹2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑑𝐹1

𝑑𝐹2

⎞⎟⎟⎟⎟
⎠

.

Suppose we are only interested in the comparative statics associated with a marginal change in 𝐹1
holding 𝐹2 constant. Then we can write this system as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝐸1/𝜕𝐹1

𝜕𝐸2/𝜕𝐹1

𝜕𝜆/𝜕𝐹1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝐺1
𝜕𝐸1

𝜕𝐺1
𝜕𝐸2

𝜕𝐺1
𝜕𝜆

𝜕𝐺2
𝜕𝐸1

𝜕𝐺2
𝜕𝐸2

𝜕𝐺2
𝜕𝜆

𝜕𝐺3
𝜕𝐸1

𝜕𝐺3
𝜕𝐸2

𝜕𝐺3
𝜕𝜆

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕𝐺1
𝜕𝐹1

𝜕𝐺2
𝜕𝐹1

𝜕𝐺3
𝜕𝐹1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= −𝐻−1𝑥,

where 𝐻 is the bordered Hessian.

Proof of Result 1. Let 𝑉 (𝐹1, 𝐹2) denote the value function of a fire manager’s program evaluated
at the optimal allocation of suppression effort. Then, using the envelope theorem, the marginal
value of a fuel treatment that intersects with a fire is:

𝜕𝑉 (𝐹1, 𝐹2)
𝜕𝐹1

= −𝐿(𝑋1) ⋅ 𝜕𝑆(𝐸1, 𝐹1)
𝜕𝐹1

> 0 ⟺ 𝜕𝑆(𝐸1, 𝐹1)
𝜕𝐹1

< 0.

Proof Result 2. Let𝐻1 denote the bordered Hessian𝐻 with the first column replaced by the vector
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𝑥. Applying Cramer’s rule, we have:

𝜕𝐸1
𝜕𝐹1

= −det(𝐻1)
det(𝐻)

= −
−𝐿(𝑋1) ⋅ 𝜕2𝑆(𝐸1, 𝐹1)

𝜕𝐹1𝜕𝐸1
det(𝐻) .

Given our assumptions regarding the convexity of suppression costs 𝐶(𝐸) and fire size 𝑆(𝐸, 𝐹),
the bordered Hessian 𝐻 is negative definite, and thus det(𝐻) < 0. Therefore,

𝜕𝐸1
𝜕𝐹1

< 0 ⟺ −𝜕2𝑆(𝐸1, 𝐹1)
𝜕𝐹1𝜕𝐸1

< 0

and
𝜕𝐸1
𝜕𝐹1

> 0 ⟺ −𝜕2𝑆(𝐸1, 𝐹1)
𝜕𝐹1𝜕𝐸1

> 0,

where−𝜕2𝑆(𝐸1,𝐹1)
𝜕𝐹1𝜕𝐸1

< 0 if fuel treatments and suppression effort are q-substitutes and−𝜕2𝑆(𝐸1,𝐹1)
𝜕𝐹1𝜕𝐸1

>
0 if they are q-complements.

Proof of Corollary 2.1. It follows from Result 2 that

𝜕𝐶(𝐸1)
𝜕𝐹1

= 𝜕𝐶(𝐸1)
𝜕𝐸1

⋅ 𝜕𝐸1
𝜕𝐹1

< 0 ⟺ 𝜕𝐸1
𝜕𝐹1

< 0 ⟺ −𝜕2𝑆(𝐸1, 𝐹1)
𝜕𝐹1𝜕𝐸1

< 0.

Proof of Corollary 2.2. It follows from Result 2 that

𝑑𝑆(𝐸1, 𝐹1)
𝑑𝐹1

= 𝜕𝑆(𝐸1, 𝐹1)
𝜕𝐸1

⋅ 𝜕𝐸1
𝜕𝐹1

+ 𝜕𝑆(𝐸1, 𝐹1)
𝜕𝐹1

,

which is negative if 𝜕𝐸1
𝜕𝐹1

> 0 but indeterminate if 𝜕𝐸1
𝜕𝐹1

< 0 since 𝜕𝑆(𝐸1,𝐹1)
𝜕𝐸1

and 𝜕𝑆(𝐸1,𝐹1)
𝜕𝐹1

are
assumed to be negative.

Proof of Result 3. Let 𝐻2 denote the bordered Hessian 𝐻 with the second column replaced by the
vector 𝑥. Applying Cramer’s rule, we have:

𝜕𝐸2
𝜕𝐹1

= −det(𝐻2)
det(𝐻)

= −
𝐿(𝑋1) ⋅ 𝜕2𝑆(𝐸1, 𝐹1)

𝜕𝐹1𝜕𝐸1
det(𝐻) .
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Given the negative definiteness of the bordered Hessian 𝐻 , det(𝐻) < 0. Therefore,

𝜕𝐸2
𝜕𝐹1

> 0 ⟺ −𝜕2𝑆(𝐸1, 𝐹1)
𝜕𝐹1𝜕𝐸1

< 0

and
𝜕𝐸2
𝜕𝐹1

< 0 ⟺ −𝜕2𝑆(𝐸1, 𝐹1)
𝜕𝐹1𝜕𝐸1

> 0,

where−𝜕2𝑆(𝐸1,𝐹1)
𝜕𝐹1𝜕𝐸1

< 0 if fuel treatments and suppression effort are q-substitutes and−𝜕2𝑆(𝐸1,𝐹1)
𝜕𝐹1𝜕𝐸1

>
0 if they are q-complements.

Proof of Corollary 3.1.

𝜕[∑𝑖 𝐶(𝐸𝑖)]
𝜕𝐹1

= 𝜕𝐶(𝐸1)
𝜕𝐸1

⋅ 𝜕𝐸1
𝜕𝐹1

+ 𝜕𝐶(𝐸2)
𝜕𝐸2

⋅ 𝜕𝐸2
𝜕𝐹1

= 𝜕𝐸1
𝜕𝐹1

⋅ (𝜕𝐶(𝐸1)
𝜕𝐸1

− 𝜕𝐶(𝐸2)
𝜕𝐸2

) ,

where the second equality follows from the fact that 𝜕𝐸1
𝜕𝐹1

= −𝜕𝐸2
𝜕𝐹1

(from Results 2 and 3). Thus,
regardless of the sign of 𝜕𝐸1

𝜕𝐹1
, the sign of the expression above depends onwhether 𝜕𝐶(𝐸1)

𝜕𝐸1
> 𝜕𝐶(𝐸2)

𝜕𝐸2

or 𝜕𝐶(𝐸1)
𝜕𝐸1

< 𝜕𝐶(𝐸2)
𝜕𝐸2

.

Proof of Corollary 3.2. If the effort resource constraint does not bind, then 𝜆 = 0 and 𝜕𝐸2
𝜕𝐹1

= 0.
Thus,

𝜕[∑𝑖 𝐶(𝐸𝑖)]
𝜕𝐹1

= 𝜕𝐶(𝐸1)
𝜕𝐸1

⋅ 𝜕𝐸1
𝜕𝐹1

< 0 ⟺ 𝜕𝐸1
𝜕𝐹1

< 0.

A2 Land-Use Designations Under The NWFP
Thirty percent of the NWFP area comprises a network of late-successional reserves (LSRs)

designed to protect remaining old-growth forests and habitat for the NSO and marbled murrelet.
Another thirty percent of the NWFP area comprises “Congressionally Reserved” (CR) areas, such
as national parks or wilderness areas. Riparian reserves—areas designed to protect and restore
salmonid habitat—comprise another 11 percent of the NWFP area. In both LSRs and riparian
reserves, fuel treatment activity is possible, though limited due to the potential for litigations and
management restrictions. However, in a good portion of CR areas, such as wilderness areas, fuel
treatment is not allowed. Non-reserved “matrix” lands are regions in which the majority of timber
harvest and other silvicultural activities take place, comprising 16 percent of the NWFP area. See
Table A5 for a list and description of all land allocations under the plan.
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A3 The Data Generating Process for Fuel Treatments & Fire
Suppression Costs

Figure A1 presents a visual representation of the hypothesized data-generating process for fuel
treatments and fire suppression costs, both of which are a function of topographic, socio-economic,
and fire risk variables. The endogenous decision of both the land manager choosing the optimal
location of fuel treatments and the fire manager allocating fire suppression effort results in jointly
determined fuel treatment locations and fire suppression costs.43

The objective of landmanagers, who decide the location of fuel treatments, is often to maximize
the effectiveness of treatments at protecting assets at risk while minimizing the costs of treatment.
As a result, fuel treatments are typically located close to homes and other assets at risk (socio-
economic variables) while occurring in areas where fire is more likely to occur or spread (fire risk).
Because resources for land managers are limited, fuel treatments typically occur in areas where the
costs of fuel treatment are minimized and, as a result, typically occur closer to forest service roads
and at lower elevations and slopes (topographic variables).

The objective of a fire manager, who is tasked with deciding the allocation of fire suppression
effort across multiple fires burning simultaneously, is to minimize the sum of fire suppression costs
and damages from wildfires. As a result, more fire suppression effort is spent on fighting fires
closer to homes and other assets at risk relative to fires occurring further away from such assets.
Topography and fire weather also influence the cost of fighting a given fire because fires that occur
in inaccessible terrain require more expensive resources to suppress the fire (e.g., smoke jumpers
or aerial attack) while fires that occur in extreme weather conditions (fire risk) require more time
and effort to suppress.

An estimation strategy that controls for all the relevant factors determining fuel treatments and
fire suppression costs may still suffer from bias because assets at risk (e.g., homes) and fire risk
are imperfectly measured, resulting in omitted factors that determine both fuel treatments and fire
suppression effort. In particular, we expect home proximity and fire risk to be positively correlated
with fire suppression effort and fuel treatments because of the influencing factors discussed above.
Thus, any estimation strategy that compares fires that occur close to fuel treatments with fires that
do not will likely suffer from an upward bias (i.e., the expected negative effect of fuel treatments
on suppression costs will be understated.). This motivates our use of an instrument that does not
correlate with socio-economic and fire risk characteristics.

A4 Land Managers Optimal Fuel Treatment Allocation Prob-
lem

In this section, we formally demonstrate that the effect of fuel treatments on suppression costs
and fire size that we identify empirically is only a portion of the total effect they may have across
the landscape. To do so, we depict a land manager who chooses the optimal allocation of fuel
treatment across the landscape to minimize the sum of expected suppression costs and damages
from wildfires. For simplicity, suppose there is a probability of ignition on 𝑖 = 1, … , 𝑁 , identical

43See Appendix A4 for an overview of the land manager’s fuel treatment location problem and section 2 for the
fire manager’s fire allocation problem.
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plots of land. The probability of a fire occurring on that plot of land is a function of fuel treatments
in that area: 𝜋𝑖(𝐹𝑖). Further, suppose that, conditional on a fire occurring on plot 𝑖, the expected
size of the fire, 𝑆𝑖, depends not only on fuel treatments on plot 𝑖, 𝐹𝑖, but also fuel treatments further
away from the fire on other plots of land, 𝐹−𝑖. As in Rideout et al. (2008), we assume that damages
from wildfires (property losses, timber, etc.) are proportional to fire size: 𝐿𝑖(𝑋𝑖)𝑆𝑖(𝐹1, … , 𝐹𝑁)
where losses, 𝐿𝑖 are a function of assets at risk, 𝑋𝑖.

Given an objective of conducting fuel treatments to minimize the expected damages and fire
suppression costs across the landscape subject to a budget constraint, we can write the optimization
problem as:

max
𝐹1,…,𝐹𝑁

−
𝑁

∑
𝑖=1

𝜋𝑖(𝐹𝑖) [𝐿𝑖(𝑋𝑖)𝑆𝑖(𝐹1, … , 𝐹𝑁) + 𝑆𝐶𝑖(𝐹1, … , 𝐹𝑁)]

s.t.
𝑁

∑
𝑖

𝑐𝑖(𝐹𝑖) ≤ 𝐵,

where 𝑐𝑖(𝐹𝑖) is the cost of conducting 𝐹𝑖 units of fuel treatment on plot 𝑖 and 𝐵 is the fixed amount
of resources that can be devoted to conducting fuel treatments. Letting 𝜆 denote the Lagrange
multiplier associated with the budget constraint, the necessary first-order conditions are:

𝜕ℒ
𝜕𝐹𝑖

= −𝜋′
𝑖(𝐹𝑖) [𝐿𝑖(𝑋𝑖)𝑆𝑖(𝐹1, … , 𝐹𝑁) + 𝑆𝐶𝑖(𝐹1, … , 𝐹𝑁)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ignition Effect

−𝜋𝑖(𝐹𝑖) [𝐿𝑖(𝑋𝑖)
𝜕𝑆𝑖(𝐹1, … , 𝐹𝑁)

𝜕𝐹𝑖
+ 𝜕𝑆𝐶𝑖(𝐹1, … , 𝐹𝑁)

𝜕𝐹𝑖
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Prevention Effect

− ∑
𝑗≠𝑖

𝜋𝑗(𝐹𝑗) [𝐿𝑗(𝑋𝑗)𝜕𝑆𝑗(𝐹1, … , 𝐹𝑁)
𝜕𝐹𝑖

+ 𝜕𝑆𝐶𝑗(𝐹1, … , 𝐹𝑁)
𝜕𝐹𝑖

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Landscape Effect

= 𝑐′
𝑖(𝐹𝑖) ∀𝑖 = 1, … , 𝑁

The first term, which we call the “ignition effect,” represents the effect of fuel treatments from
reducing the likelihood that fires ignite on a parcel of land (𝜋′

𝑖(𝐹𝑖) < 0). The second term, whichwe
call the “prevention effect,” represents how suppression costs and the size of fires are influenced
by the proximity of fuel treatments close to the ignition point of a fire. The third term, which
we call the “landscape effect,” represents the effect of fuel treatments on the spread of wildfires
across the landscape. That is, if there exists parcels of land 𝑖 and 𝑗 such that 𝐿𝑗(𝑋𝑗)𝜕𝑆𝑗(𝐹1,…,𝐹𝑁)

𝜕𝐹𝑖
+

𝜕𝑆𝐶𝑗(𝐹1,…,𝐹𝑁)
𝜕𝐹𝑖

< 0, then fuel treatments will influence the cost and size of large fires, which spread
into fuel treatments that occur further from their ignition point.

Our empirical analysis only identifies the prevention effect since we are conditioning on fires
that ignite close to fuel treatments. If the ignition and landscape effects of fuel treatments are
significant, then our estimates are only capturing a portion of the total benefits that arise from fuel
treatments. We leave the identification of the ignition and landscape effects to future research.
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A5 The Intersection-Union Hypothesis Test
Our model of the fire manager’s effort allocation problem demonstrates that a negative direct

effect of fuel treatments on fire size is a sufficient statistic for the economic benefits of fuel treat-
ments. We test for its existence indirectly by testing the null hypothesis that the effects of fuel
treatments on fire size or cost are weakly positive. Specifically, let 𝜙𝑐 and 𝜙𝑠 denote the elasticity
of suppression costs and fire size with respect to fuel treatments. We want to test the null hypothesis

𝐻𝑜 ∶ 𝜙𝑐 ≥ 0 or 𝜙𝑠 ≥ 0

against the alternative hypothesis of

𝐻𝑎 ∶ 𝜙𝑐 < 0 and 𝜙𝑠 < 0.

The intersection-union hypothesis test (Casella and Berger, 2002) considers the overall null hy-
pothesis of the union of several individual null hypotheses to be true if at least one of the individual
null hypotheses is true. Thus, to reject the null, we must have both 𝜙𝑐 < 0 and 𝜙𝑠 < 0. This
suggests the following implementation:

1. Conduct a one-sided test for 𝜙𝑐 ≥ 0 and a one-sided test for 𝜙𝑠 ≥ 0.

2. Reject overall 𝐻𝑜 if both of the one-sided tests for 𝜙𝑐 and 𝜙𝑠 are rejected.

We implement this hypothesis test using a bootstrap approach that adapts the percentile-t boot-
strap with asymptotic refinement procedure presented in Cameron and Trivedi (2005). Specifically,
we bootstrap the following 𝑡-statistics:

𝑡𝑐 =
̂𝜙𝑐 − 𝜙𝑐0
𝑠𝑒( ̂𝜙𝑐)

and 𝑡𝑠 =
̂𝜙𝑠 − 𝜙𝑠0
𝑠𝑒( ̂𝜙𝑠)

,

where ̂𝜙𝑐 and ̂𝜙𝑠 are our instrumental variable estimates and 𝜙𝑐0 = 0 and 𝜙𝑠0 = 0 are the values
under the null hypothesis. The bootstrap views the original sample as the data generating process
(dgp), so the bootstrap sets the dgp values of 𝜙𝑐 and 𝜙𝑠 to be ̂𝜙𝑐 and ̂𝜙𝑠. In each bootstrap resample,
we compute the following 𝑡-statistics:

𝑡∗
𝑐,𝑏 =

̂𝜙∗
𝑐,𝑏 − ̂𝜙𝑐

𝑠𝑒( ̂𝜙∗
𝑐,𝑏)

and 𝑡∗
𝑠,𝑏 =

̂𝜙∗
𝑠,𝑏 − ̂𝜙𝑠

𝑠𝑒( ̂𝜙∗
𝑠,𝑏)

,

where ̂𝜙∗
𝑐,𝑏 and ̂𝜙∗

𝑠,𝑏 are the parameter estimates in the 𝑏th bootstrap and 𝑠𝑒( ̂𝜙∗
𝑐,𝑏) and 𝑠𝑒( ̂𝜙∗

𝑠,𝑏) are
the estimates of the standard error of ̂𝜙∗

𝑐,𝑏 and ̂𝜙∗
𝑠,𝑏 using the same method (i.e., cluster-robust) as

the computation of 𝑠𝑒( ̂𝜙𝑐) and 𝑠𝑒( ̂𝜙𝑠).
The 𝐵 bootstraps yield the 𝑡-values 𝑡∗

𝑐,1, ..., 𝑡∗
𝑐,𝐵 and 𝑡∗

𝑠,1, ..., 𝑡∗
𝑠,𝐵, whose empirical joint dis-

tribution is used as the estimate of the joint distribution of 𝑡𝑐 and 𝑡𝑠. The p-value for the overall
hypothesis test is the probability of observing values of the test statistics as extreme as 𝑡𝑠 and 𝑡𝑠
under the null hypothesis. We can calculate the empirical p-value as the proportion of bootstrap
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samples in which both 𝑡-statistics lie below their observed values:

𝑝 =
∑𝐵

𝑏=1 1(𝑡∗
𝑐,𝑏 < 𝑡𝑐 and 𝑡∗

𝑠,𝑏 < 𝑡𝑠)
𝐵 .

We reject the null if 𝑝 < 𝛼, where 1 − 𝛼 is the confidence level of the test. Given the clustered
nature of our data, we conduct the bootstrap sampling by drawing independent clusters of fires
(with replacement).
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A6 Supplementary Figures

Figure A1: The Data generating process for Fuel Treatments & Fire Suppression Costs
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Figure A2: Distribution of fire suppression costs and fire size.
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Notes: “Log Suppression Costs” is the log(𝑌 + 1) transformation associated with our main specification.

Figure A3: IV estimates by fuel treatment acre circle size
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Notes: The above figures plot the IV suppression cost and fire size estimates based on different specifica-
tions of fire fuel treatment acre circle size.
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Figure A4: Example Counterfactual Increases in Fuel Treatments - Flagg Mountain Fire - 2020

100−Acre−Cirlce

Counterfactual Increase

Original Treatments

Notes: The above map visually demonstrates how fuel treatments are scaled up proportionately in our
counterfactual analysis for a particular fire, the Flagg Mountain Fire, a 0.1 acre fire that occurred close to
Mazama, WA, in 2020. The red star shows the ignition point location, the red circle is the area from which
fuel treatments are to be calculated (in this case, 100 acres surrounding the ignition point), and the dark blue
shows the original location of fuel treatments close to the fire. The light blue areas are the counterfactual
increased area that receives fuel treatment. In our counterfactual analysis, we recalculate the total acres
intersected with the fire to garner an estimated increase in 100-acre fire-fuel treatment intersections. To
avoid double counting, we take the union of fuel treatments within the circle and count mechanical and
prescribed fire treatments separately.
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A7 Supplementary Tables

Table A5: Land allocations under the Northwest Forest Plan

Land Allocation Description Acres % NWFP

Late-Successional
Reserves (LSRs)

Lands reserved for the protection and restoration of old
growth forest ecosystems and habitat for marbled mur-
relet (LSR3) and northern spotted owl activity core reserves
(LSR4).

7.4 mil 30%

Congressional Reserved
(CR) Areas

Lands reserved by the U.S. Congress such as wilderness
areas, wild and scenic rivers, and national parks and mon-
uments.

7.3 mil 30%

Riparian Reserves

Protective buffers along streams, lakes, and wetlands de-
signed to enhance habitat for riparian-dependent organ-
isms, provide good water-quality dispersal corridors for
terrestrial species, and provide connectivity within water-
sheds.

2.6 mil 11%

Matrix
Federal lands outside of reserved allocations where most
timber harvest and silvicultural activities were expected to
occur.

4 mil 16%

Administrative With-
drawn Areas

Areas identified in local forest and district plans; they in-
clude recreation and visual areas, back country, and other
areas where management emphasis does not include sched-
uled timber harvest.

1.5 mil 6%

Adaptive Management
Areas–nonreserved

Identified to develop and test innovative management to
integrate and achieve ecological, economic, and other so-
cial and community objectives. Some commercial timber
harvest was expected to occur in these areas, but with eco-
logical objectives.

1.5 mil 6%

Managed Late-
Successional Areas

Areas for the restoration and maintenance of optimum lev-
els of old growth stands on a landscape scale, where regular
and frequent wildfires occur. Silvicultural and fire hazard
reduction treatments are allowed to help prevent older for-
est losses from large wildfires.

.1 mil < 1%
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Table A6: Main Variables & Data Sources

Category Variables Sources

Fires Cost per fire, Acres Burned &
Ignition Date

FAMWEB
(2023)
NIFC (2024b)

Fuel Treatments Acres treated, cost,
& treatment type USFS (2024)

Institutional Variables NWFP Land-use Designations REO (2013)

Topography Slope, Aspect, & Elevation LANDFIRE

Weather

Temperature, Precipitation, Vapor
Pressure Deficit

Wind Speed & ERC

PRISM

GridMET

Vegetation
Characteristics

Fuel Group Type
Previous Acres Burned LANDFIRE

Historic Fire Risk

Mean Fire Return Interval
(MFRI)

Climate Normals

LANDFIRE

PRISM

Economic Variables

Distance to WUI Cenus Block,
Number of Households & Population

Total housing value,
total household income

Forest Service Roads

Radeloff et al. (2022)

ACS

USFS (2023a)
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Table A7: Control Variable Names, Descriptions, & Sources

Name Definition Source

Topographic Variables

Slope Slope percent at origin of ignition LANDFIRE

Elevation Elevation (ft) at origin of ignition LANDFIRE

Aspect Class 8 aspect classes based on the cardinal direc-
tions44

LANDFIRE

TRI Terrain Ruggedness Index (TRI)45 LANDFIRE

Weather

Temperature Max Maximum temperature on day of discovery
and point of ignition

PRISM

Temperature Mean Mean temperature on day of discovery and
point of ignition

PRISM

VPD Max vapor pressure deficit on day of discov-
ery and point of ignition

PRISM

Wind Speed Average wind speed meter/second on day of
discovery and point of ignition

gridMET

ERC Average energy release component (ERC) on
day of discovery and point of ignition

gridMET

Vegetation Characteristics

Previous Acres Burned The number of acres previously burned inside
of the 100-acre ignition circle within the last
10 years

MTBS

Continued on next page

44See https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/
how-aspect-works.htm for the classes used.

45Constructed using the elevation layer from LANDFIRE and then using the terrain function from terra.
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Table A1 Continued

Name Definition Source

Riparian Dummy variable equal to one if the exist-
ing vegetation group type associated with the
point of ignition is Riparian

LANDFIRE

Fuel Group Type The fuel group type associated with a fires ig-
nition point in 2001 based on the 13 Anderson
Fire Behavior Fuel Model

LANDFIRE

Canopy Bulk Density The density of available canopy fuel in a stand
based on a fires ignition point in 2001. Mea-
surements are kg m-3 * 100.

LANDFIRE

Canopy Bulk Density The average height of the top of the vegetated
canopy based on a fires ignition point in 2001.
Measurement units are meters * 10

LANDFIRE

Canopy Base Height The average height from the ground to a for-
est stand’s canopy bottom based on a fires ig-
nition point in 2001. Measurement units are
meters*10

LANDFIRE

Determinants of Fire Suppression Effort

Distance WUI Distance from ignition to nearest U.S. Census
WUI Block

Radeloff et al. (2022)

Distance USFS Road Distance from ignition to nearest USFS road USFS (2023a)

Total Housing Value The total housing value in 10 kilometer radius
from point of ignition/100,000

ACS

Total Population The total population within 10 kilometers
of ignition point based on 2010 US Census
Blocks (assuming uniform distribution)

(Radeloff et al., 2022)

Total Housing Units The total housing units within 10 kilometers
of ignition point based on 2010 US Census
Blocks (assuming uniform distribution)

(Radeloff et al., 2022)

Continued on next page
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Table A1 Continued

Name Definition Source

Historic Fire Risk Variables

MFRI Mean Fire Return Interval (MFRI), the aver-
age period between fires under presumed his-
torical fire regime

LANDFIRE

Precip - CN Precipitation 30 year (1991-2020) climate
normal. Calculated as the average monthly
precipitation in August based on the ignition
point of a fire

PRISM

Temp Mean - CN Temperature Mean 30 year (1991-2020) cli-
mate normal. Calculated as the average
monthly temperature mean in August based
on the ignition point of a fire

PRISM

Temp Max - CN Temperature Max 30 year (1991-2020) cli-
mate normal. Calculated as the average
monthly temperature max in August based on
the ignition point of a fire

PRISM

VPD - CN Max Vapor Pressure Deficit 30 year (1991-
2020) climate normal. Calculated as the aver-
age monthly temperature max vapor pressure
deficit in August based on the ignition point
of a fire

PRISM

Administrative Units

National Forest Dummy variables for National Forest USFS (2023b)

Ranger District Dummy variables for Ranger District (subset
of National Forest)

USFS (2023c)
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Table A8: USFS Suppression & Fuel Treatments Costs

Suppression Costs Acres Burned Acres Treated Costs of Treatment

Matrix & LSR 4,647,248,435 5,354,781 1,471,894 279,618,201
Full NWFP Area 6,866,239,500 9,223,544 1,582,755 301,385,737

WA, OR, & Nor CA 12,115,983,010 16,629,129 5,747,733 1,041,179,711
U.S. 30,530,809,000 - - -

Notes: The first two columns show the suppression costs and acres burned (2006-2023) while the third and fourth
columns show fuel treatment costs and acres treated (2006-2023). The three rows are different samples of fires and
treatments across three different regions in WA, OR, and Nor CA. The first row corresponds to our sample of Matrix
and LSR areas inside of the NWFP region. The second row corresponds to treatments and fires that occur inside of
the entire NWFP region, while the third row corresponds to fires and treatments inside the entire WA, OR, and Nor
CA region. Northern CA is defined by any fires or treatments that occur above the southernmost latitude of the NWFP
region. The fourth row shows the total suppression costs spent by the USFS (2006-2023).

Table A9: LSR IV - Robustness Check - Spillovers

First Stage Reduced Form IV OLS

log(𝐹𝑇𝑖𝑡) Size Cost Size Cost Size Cost

𝐿𝑆𝑅𝑖𝑡 -0.140*** 0.071 0.154***
(0.026) (0.058) (0.042)

log(𝐹𝑇𝑖𝑡) -0.510 -1.099** -0.045** -0.021
(0.446) (0.404) (0.018) (0.021)

No. Fires 0.000 0.001** 0.001** 0.001** 0.001** 0.001** 0.002**
(0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001)

No. Fires FT > 0 -0.004 0.020 0.005 0.018 0.001 0.020 0.005
(0.004) (0.012) (0.015) (0.011) (0.016) (0.012) (0.015)

1st Stage F-Stat 28.1
𝑅2 0.18 0.18 0.73 0.13 0.67 0.18 0.73
N 8297 8297 8297 8297 8297 8297 8297
* p < 0.1, ** p < 0.05, *** p < 0.01
Notes: The above table explores the robustness of the main IV regression results when adding controls that measure
the scarcity of suppression resources: “No. Fires” and “No. Fires FT > 0”. ”No. Fires” is the difference in the
average number of fires occurring in a week for a state from 2000-2020 to the realized number of co-occurring fires
in the week and state where a fire ignites, while ”No. Fires FT > 0” is the number of fires that have a non-zero fuel
treatment-100 acre intersection occurring in the same state where a fire ignites. The table reports the results of five
separate regressions for the first stage, reduced form, and full IV estimate results using an indicator for whether a fire
occurs within a late-successional reserve, 𝐿𝑆𝑅𝑖 as an instrument for the natural log of fuel treatments log(𝐹𝑇𝑖𝑡).
The sample includes wildfires in 15 National Forests that are apart of the NWFP from 2006–2020. The first column
reports the coefficient estimates for the first stage, log(𝐹𝑇𝑖𝑡), while the second and third columns are the reduced form
results on the natural log of fire size and suppression costs. The fourth and fifth columns are the full 2SLS regression
results on the natural log of wildfire size and suppression cost. Each regression includes the same control variables and
fixed effects described in Table 3. Standard errors are clustered at the national-forest level. First stage Kleibergen-Paap
F-statistic are calculated via cluster robust-standard errors from the Fixest package in R.
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Table A10: IV Matching Estimate Results

Log Fire Size - LSR IV Log Fire Cost - LSR IV

Point Estimate -0.823 -1.329
95% CI [-1.911,0.264] [-2.501,-0.156]

N 6450 6450

Notes: The above table presents the IV estimate using matching. Fires are matched via a mixed exact and inexact
matching using Genetic Search Algorithm (the GenMatch function from the Matching package in R (Sekhon, 2011)):
i) fires are exactly matched such that they occur in the same National Forest during the same month (of a given year),
ii) fires are inexactly matched to find the optimal covariate balance across the most important determinants of fire
suppression costs and fire size: Distance to WUI and FS road, elevation and slope (at ignition point), and VPD and
wind speed (on day of ignition). Standard errors are calculated via the Delta Method.
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Table A11: LSR IV - Robustness Checks - Estimation On Different Samples

1st Stage RF Size RF Cost IV Size IV Cost

Lightning Only Fires
𝐿𝑆𝑅𝑖𝑡 -0.147*** 0.185** 0.274***

(0.039) (0.072) (0.063)
log(𝐹𝑇𝑖𝑡) -1.260* -1.864**

(0.695) (0.740)
1st Stage F-Stat 13.8
N 5060 5060 5060 5060 5060
All Fires in NWFP National Forests
𝐿𝑆𝑅𝑖𝑡 -0.105*** 0.111* 0.196***

(0.028) (0.056) (0.048)
log(𝐹𝑇𝑖𝑡) -1.056 -1.861**

(0.665) (0.736)
1st Stage F-Stat 13.8
N 17547 17547 17547 17547 17547
< 2km from Matrix-LSR Border
𝐿𝑆𝑅𝑖𝑡 -0.109*** 0.043 0.127*

(0.018) (0.067) (0.063)
log(𝐹𝑇𝑖𝑡) -0.391 -1.162*

(0.616) (0.607)
1st Stage F-Stat 11.2
N 7783 7783 7783 7783 7783
No Complex Fires
𝐿𝑆𝑅𝑖𝑡 -0.174*** 0.125 0.213***

(0.046) (0.082) (0.066)
log(𝐹𝑇𝑖𝑡) -0.719 -1.227***

(0.487) (0.414)
1st Stage F-Stat 14.3
N 4685 4685 4685 4685 4685
* p < 0.1, ** p < 0.05, *** p < 0.01
Notes: The above table explores the robustness of the main IV regression results when using different samples of fires.
The table reports the results of five separate regressions for the first stage, reduced form, and full IV estimate results
using an indicator for whether a fire occurs within a late-successional reserve, 𝐿𝑆𝑅𝑖 as an instrument for the natural
log of fuel treatments log(𝐹𝑇𝑖𝑡). Each regression includes the controls and fixed effects used in Table 3. The first
sample includes only fires ignited by lightning strikes, and the second includes fires that ignite inside any National
Forest apart from the NWFP, excluding fires in wilderness areas. The third sample uses only fires that are within 2
kilometers of Matrix-LSR borders. The fourth sample only includes fires that are not part of a complex from the NIFC
fire cost data source (2015-2023). Standard errors are clustered at the national forest level. First stage Kleibergen-Paap
F-statistic are calculated via cluster robust-standard errors from the Fixest package in R.
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Table A12: LSR IV - Robustness Checks - Dealing with Zero Cost Fires

1st Stage RF Size RF Cost IV Size IV Cost

No Zero Cost Fires

𝐿𝑆𝑅𝑖𝑡 -0.114*** 0.078 0.136**
(0.033) (0.068) (0.063)

log(𝐹𝑇𝑖𝑡) -0.678 -1.189
(0.643) (0.750)

1st Stage F-Stat 12.2
N 5286 5286 5286 5286 5286
Imputed Zero Cost

𝐿𝑆𝑅𝑖𝑡 -0.139*** 0.103* 0.134***
(0.021) (0.057) (0.041)

log(𝐹𝑇𝑖𝑡) -0.740 -0.949**
(0.436) (0.371)

1st Stage F-Stat 42.0
N 9797 9797 9797 9797 9797
Above Median Cost & Size

𝐿𝑆𝑅𝑖𝑡 -0.139*** 0.021 0.012**
(0.021) (0.013) (0.005)

log(𝐹𝑇𝑖𝑡) -0.150 -0.089**
(0.088) (0.035)

1st Stage F-Stat 13.5
N 9797 9797 9797 9797 9797
* p < 0.1, ** p < 0.05, *** p < 0.01
Notes: The above table explores the robustness of the main IV regression results to different ways of dealing with zero
cost fires. The table reports the results of five separate regressions for the first stage, reduced form, and full IV estimate
results using an indicator for whether a fire occurs within a late-successional reserve, 𝐿𝑆𝑅𝑖 as an instrument for the
natural log of fuel treatments log(𝐹𝑇𝑖𝑡). Each regression includes the same instrument, controls, and fixed effects
used in Table 3. The first set of regressions removes all zero-cost fires from our sample. The second set of regressions
imputes the cost of all small zero-cost fires (<100 acres) with the median cost of small non-zero-cost fires. The third
set of regressions replaces the natural log of fire size and suppression costs for indicators of whether a fire is above the
median size or cost. First stage Kleibergen-Paap F-statistic are calculated via cluster robust-standard errors from the
Fixest package in R.
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Table A13: LSR IV - Robustness Checks - Changes to Instrument & Endogenous Regressors

1st Stage RF Size RF Cost IV Size IV Cost

Linear Fuel Treatments: 𝐹𝑇𝑖𝑡

𝐿𝑆𝑅𝑖𝑡 -1.777*** 0.103* 0.179***
(0.512) (0.057) (0.046)

𝐹𝑇𝑖𝑡 -0.058 -0.101**
(0.040) (0.042)

1st Stage F-Stat 12.0
N 9797 9797 9797 9797 9797
IVHS Fuel Treatments

𝐿𝑆𝑅𝑖𝑡 -0.167*** 0.103* 0.179***
(0.024) (0.057) (0.046)

𝑎𝑠ℎ𝑖𝑛(𝐹𝑇𝑖𝑡) -0.619 -1.072***
(0.362) (0.329)

1st Stage F-Stat 46.8
N 9797 9797 9797 9797 9797
Previous 5 Years Fuel Treatments

𝐿𝑆𝑅𝑖𝑡 -0.078*** 0.103* 0.179***
(0.013) (0.057) (0.046)

log(𝐹𝑇𝑖𝑡,5𝑌 ) -1.319 -2.284***
(0.790) (0.754)

1st Stage F-Stat 34.1
N 9797 9797 9797 9797 9797
Continuous IV

𝐴𝑐𝑟𝑒𝑠𝐿𝑆𝑅𝑖𝑡 -0.008*** 0.013* 0.021***
(0.001) (0.006) (0.005)

log(𝐹𝑇𝑖𝑡) -0.860* -1.403***
(0.451) (0.437)

1st Stage F-Stat 43.8
N 9797 9797 9797 9797 9797
* p < 0.1, ** p < 0.05, *** p < 0.01
Notes: The above table explores the robustness of the main IV regression results to different specifications of the
endogenous variable and instrument. The table reports the results of five separate regressions for the first stage, reduced
form, and full IV estimate results using different instruments and endogenous regressors. Each regression includes the
same sample, controls, and fixed effects used in Table 3. The first set of regressions replaces the natural log of fuel
treatments, log(𝐹𝑇𝑖𝑡), for fuel treatments in levels 𝐹𝑇𝑖𝑡. The second set of regressions replaces the natural log of
fuel treatments, log(𝐹𝑇𝑖𝑡), for the inverse hyperbolic sine transform of fuel treatments 𝑎𝑠𝑖𝑛ℎ(𝐹𝑇𝑖𝑡). The third set
of regressions replaces the natural log of fuel treatments, log(𝐹𝑇𝑖𝑡), which is calculated using the total acres of fuel
treatment within the past 10 years of a fire for natural log of fuel treatments in the past 5 years log(𝐹𝑇𝑖𝑡,5𝑌 ). The
fourth set of regressions replaces an indicator for whether a fire starts in an LSR, 𝐿𝑆𝑅𝑖, with a continuous measure,
𝐴𝑐𝑟𝑒𝑠𝐿𝑆𝑅𝑖, which is the total acres within the 100-acre circle of a fire that falls under LSR status. Standard errors are
clustered at the national forest level. First stage Kleibergen-Paap F-statistic are calculated via cluster robust-standard
errors from the Fixest package in R.
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Table A14: LSR IV - Robustness Checks - Using Different Fixed Effects

1st Stage RF Size RF Cost IV Size IV Cost

Ranger District FEs
𝐿𝑆𝑅𝑖𝑡 -0.162*** 0.091 0.133***

(0.025) (0.055) (0.044)
log(𝐹𝑇𝑖𝑡) -0.559 -0.819**

(0.373) (0.293)
1st Stage F-Stat 40.6
N 9766 9766 9766 9766 9766
Year & Month (of Year) FEs
𝐿𝑆𝑅𝑖𝑡 -0.140*** 0.099 0.169***

(0.020) (0.059) (0.045)
log(𝐹𝑇𝑖𝑡) -0.705 -1.210***

(0.458) (0.397)
1st Stage F-Stat 48.1
N 9797 9797 9797 9797 9797
State-Year & State-Month FEs
𝐿𝑆𝑅𝑖𝑡 -0.142*** 0.100 0.168***

(0.021) (0.060) (0.046)
log(𝐹𝑇𝑖𝑡) -0.704 -1.187**

(0.470) (0.416)
1st Stage F-Stat 46.5
N 9797 9797 9797 9797 9797
State-Year-Month FEs
𝐿𝑆𝑅𝑖𝑡 -0.134*** 0.108* 0.180***

(0.020) (0.060) (0.045)
log(𝐹𝑇𝑖𝑡) -0.801 -1.343***

(0.501) (0.437)
1st Stage F-Stat 46.4
N 9797 9797 9797 9797 9797
* p < 0.1, ** p < 0.05, *** p < 0.01
Notes: The above table explores the robustness of the main IV regression results with the use of different fixed effects.
The table reports the results of five separate regressions for the first stage, reduced form, and full IV estimate results
using an indicator for whether a fire occurs within a late-successional reserve, 𝐿𝑆𝑅𝑖 as an instrument for the natural
log of fuel treatments log(𝐹𝑇𝑖𝑡). Each regression includes the same sample and controls in Table 3. The first set
of regressions replaces National Forest fixed effects for Ranger District fixed effects. The second set of regressions
replaces year-month fixed effects with year and month (of year) fixed effects. The third set of regressions replaces
year-month fixed effects with state-year and state-month fixed effects. The fourth set of regressions replaces year-
month fixed effects with state-year-month fixed effects. Standard errors are clustered at the national-forest level. First
stage Kleibergen-Paap F-statistic are calculated via cluster robust-standard errors from the Fixest package in R.
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